SECTION A

Q1.
$$(\csc \theta - \cot \theta)^2 = ?$$

$$\mathbf{A} \quad \frac{1+\cos\theta}{1-\cos\theta}$$

$$C = \frac{1+\sin\theta}{1-\sin\theta}$$

$$\mathbf{B} \quad \frac{1-\cos\theta}{1+\cos\theta}$$

Q2. If
$$\cos(\alpha+\beta)=0$$
, then value of $\cos\left(\frac{\alpha+\beta}{2}\right)$ is equal to:

A
$$\frac{1}{\sqrt{2}}$$

B
$$\frac{1}{2}$$

$$\mathbf{D} \sqrt{2}$$

Q3. Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

Assertion: In a right $\triangle ABC$, right angled at B, if $\tan A = \frac{12}{5}$, then $\sec A = \frac{13}{5}$.

Reason: cot A is the product ofcot and A.

- A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- C Assertion (A) is true but reason (R) is false.
- **B** Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- **D** Assertion (A) is false but reason (R) is true.

Q4.
$$\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}$$
 is equal to:

$$\mathbf{A} = 2 \tan \theta$$

C 2cosec
$$\theta$$

B
$$2 \sec \theta$$

D
$$2 \tan \theta \sec \theta$$

Q5. If
$$\cot\theta=\frac{7}{8}$$
 then the value of $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}$ is:

$$A = \frac{8}{7}$$

B
$$\frac{49}{64}$$

$$C = \frac{7}{8}$$

$$\mathbf{D} = \frac{64}{49}$$

If $\cos A = \frac{4}{5}$, then the value of $\tan A$ is:

$$A = \frac{3}{5}$$

$$\mathbf{B} = \frac{3}{4}$$

$$C = \frac{4}{3}$$

D
$$\frac{5}{3}$$

Q7.
$$\sqrt{\frac{1-\sin A}{1+\sin A}}=?$$

$$A \quad \sec A + \tan A$$

$$\mathbf{B} \sec \mathbf{A} - \tan \mathbf{A}$$

$$\frac{2 \tan 30^{\circ}}{1 - \tan^2 30^{\circ}} =$$

$$A \cos 60^{\circ}$$

$$\mathbf{B} \sin 60^{\circ}$$

$$\mathbf{C} \quad \tan 60^{\circ}$$

$$\mathbf{D} \sin 30^{\circ}$$

Q9. If
$$8 \tan x = 15$$
, then $\sin x - \cos x$ is equal to:

A
$$\frac{8}{17}$$

B
$$\frac{17}{7}$$

$$C = \frac{1}{17}$$

D
$$\frac{7}{17}$$

Q10If
$$x \tan 45^{\circ} \cos 60^{\circ} = \sin 60^{\circ} \cot 60^{\circ}$$
, then x is equal to:

A 1

 $\mathbf{B} \sqrt{3}$

 $C = \frac{1}{2}$

 $\mathbf{D} = \frac{1}{\sqrt{2}}$

SECTION B

Q11.Prove the following trigonometric identities.

$$\frac{\cos \theta}{\csc \theta + 1} + \frac{\cos \theta}{\csc \theta - 1} = 2 \tan \theta$$

OR

$$(\operatorname{cosec} A - \sin A)(\operatorname{sec} A - \cos A)(\tan A + \cot A) = 1$$

Q12.Very-short and Short-Answer Questions.

Write the value of $\sec^2 \theta (1 + \sin \theta)(1 - \sin \theta)$.

SECTION C

Q13Prove the following trigonometric identities.

$$\sec^4 A(1-\sin^4 A) - 2\tan^2 A = 1$$

Q14In a \triangle ABC, right angled at A, if tan C = $\sqrt{3}$, find the value of sin B cos C + cos B sin C.

Q15If $\sqrt{3} \tan \theta = 3 \sin \theta$, find the value of $\sin^2 \theta - \cos^2 \theta$.

Q16Prove the following: $(\csc A - \sin A)(\sec A - \cos A) = \frac{1}{\tan A + \cot A}$

OR

Q16Prove the following trigonometric identities. $\frac{\sec\theta - 1}{\sec\theta + 1} = \left(\frac{\sin\theta}{1 + \cos\theta}\right)^2$

$$\frac{\sec \theta - 1}{\sec \theta + 1} = \left(\frac{\sin \theta}{1 + \cos \theta}\right)^2$$

SECTION D

Q17Prove that $\frac{1}{(\sec\theta - \tan\theta)} - \frac{1}{\cos\theta} = \frac{1}{\cos\theta} - \frac{1}{(\sec\theta + \tan\theta)}$

OR

Q17 Prove that $\frac{\sin A - 2\sin^3 A}{(2\cos^3 A - \cos A)} = \tan A$.

Q18Prove the following identities:
$$\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} + \frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta} = \frac{2}{\left(\sin^2\theta - \cos^2\theta\right)} = \frac{2}{\left(2\sin^2\theta - 1\right)}$$

SECTION E

Q19.Three friends - Anshu, Vijay and Vishal are playing hide and seek in a park. Anshu and Vijay hide in the shrubs and Vishal have to find both of them. If the positions of three friends are at A, B and C respectively as shown in the figure and forms a right angled triangle such that AB = 9 m, BC = $\sqrt{3}$ m and \angle B = 90°, then answer the following questions.

- 1. The measure of $\angle A$ is:
- 1.30°
- 2.45°
- 3.60°
- 4. None of these.
- 2. The measure of $\angle C$ is:
- 1. 30°
- 2.45°
- 3.60°
- 4. None of these.
- 3. The length of AC is:
- $1.2\sqrt{3} \text{ m}$
- $2.\sqrt{3} \text{ m}$
- 3. $4\sqrt{3} \text{ m}$
- $4.6\sqrt{3} \text{ m}$
- $4.\cos 2A =$
- 1.0

- 1. 0 2. $\frac{1}{2}$ 3. $\frac{1}{\sqrt{2}}$ 4. $\frac{\sqrt{3}}{2}$ 5. $Sin\left(\frac{C}{2}\right) = 1$ 1. 0 2. $\frac{1}{2}$ 3. $\frac{1}{\sqrt{2}}$ 4. $\frac{\sqrt{3}}{2}$