

PADMAVATI INTERNATIONAL SCHOOL HOSUR-RABKAVI DIST BAGALKOTE KARNATAKA

CLASS 10 - MATHEMATICS PERIODIC TEST 1

PERIODIC TEST 1			
Time A	llowed: 3 hours	Maximum Marks	s: 80
	Se	ection A	
1.	The product of a non-zero rational and an i	rrational number is	[1]
	a) always irrational	b) always rational	
	c) one	d) rational or irrational	
2.	$7 \times 11 \times 13 + 13$ is a/an:		[1]
	a) odd number but not composite	b) square number	
	c) prime number	d) composite number	
3.	3. If α and β are the zeros of $2x^2$ + $5x$ - 9 then the value of $\alpha\beta$ is		[1]
	a) $\frac{-9}{2}$	b) $\frac{9}{2}$	
	c) $\frac{5}{2}$	d) $\frac{-5}{2}$	
4.	4. If one of the zeroes of the quadratic polynomial $(k - 1) x^2 + kx + 1$ is -3 , then the value of k		[1]
	a) $\frac{-2}{3}$	b) $\frac{-4}{3}$	
	c) $\frac{4}{3}$	d) $\frac{2}{3}$	
5.	3	is 9. Nine times this number is twice the number	[1]
	obtained by reversing the digits, then the number is		
	a) 72	b) 27	
	c) 18	d) 81	
6.	For what value of k, do the equations $kx - 2y = 3$ and $3x + y = 5$ represent two lines intersecting		[1]
	at a unique point?		
	a) all real values except -6	b) k = 3	
	c) k = 6	d) $k = -3$	
7.	A quadratic equation $ax^2 + bx + c = 0$, has coincident roots, if		[1]
	a) $b^2 - ac = 0$	b) $b^2 - 4ac < 0$	
	c) $b^2 - 4ac > 0$	d) $b^2 - 4ac = 0$	
8.	8. If $\frac{1}{2}$ is a root of the equation $x^2 + kx - \frac{5}{4} = 0$, then the value of k is		[1]
	_		

b) -2

d) 2

9. The number of terms of the A.P. 3, 7, 11, 15, ... to be taken so that the sum is 406 is [1] a) 14 b) 5 c) 10 d) 12 If $a_1 = 4$ and $a_n = 4a_{n-1} + 3$, n > 1, then the value of a_4 is 10. [1] a) 320 b) 329 d) 300 c) 319 **Section B** Prove that one and only one out of n, n + 2 and n + 4 is divisible by 3, where n is any positive 11. [2] integer. Use Euclid's division algorithm to find the HCF of 504 and 980. 12. [2] Find all zeros of the polynomial $f(x) = 2x^4 - 2x^3 - 7x^2 + 3x + 6$, if its two zeros are [2] 13. $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$. [2] Find the zeroes of quadratic polynomial given as: $6x^2 - 3 - 7x$ and also verify the relationship 14. between the zeroes and the coefficients. 15. The sum of the digits of a two-digit number is 12. The number obtained by interchanging its [2] digits exceeds the given number by 18. Find the number. Solve for x and y: [2] 16. $a^2x + b^2y = c^2$ $b^2x + a^2y = d^2$ The sum of two numbers is 9 and the sum of their reciprocals is $\frac{1}{2}$. Find the numbers. 17. [2] [2] Find the roots of the equation $ax^2 + a = a^2x + x$ 18. Find the sum of the first 15 terms of sequences having n^{th} term as $x_n = 6 - n$. [2] 19. [2] Find the 10th term from the end of the A.P. 8,10,12,..., 126. 20. **Section C** Show that $5-\sqrt{3}$ is irrational. 21. [3] 22. The traffic lights at three different road crossings change after every 48 seconds, 72 seconds [3] and 108 seconds respectively. If they all change simultaneously at 8 a.m. then at what time will they again change simultaneously? Divide $3x^4$ - $10x^3$ + $5x^2$ + 11x - 12 by $3x^2$ - 10x + 8 and verify the division algorithm. [3] 23. [3] Verify division algorithm for the polynomials $f(x) = 8 + 20x + x^2 - 6x^3$ and $g(x) = 2 + 5x - 3x^2$. 24. 25. Solve the pair of linear equations by reducing them to a pair of linear equations: [3] 6x + 3y = 6xy and 2x + 4y = 5xy26. Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as [3] Sonu. How old are Nuri and Sonu? 27. Vikram wishes to fit three rods together in the shape of a right triangle. The hypotenuse is to [3] be 2 cm longer than the base and 4 cm longer than the altitude. What should be the lengths of the rods? 28. The length of a rectangle exceeds its width by 8 cm and the area of the rectangle is 240 sq. cm. [3] Find the dimensions of the rectangle.

UNIT TEST

2/3

- 29. If m times the mth term of an AP is equal to n times the nth term and $m \neq n$, then show that its [3] (m + n)th term is zero.
- 30. In an AP: a = 8, $a_n = 62$, $S_n = 210$, find n and d. [3]

Section D

- 31. Prove that $\sqrt{5} + \sqrt{7}$ is irrational. [4]
- 32. If α and β are the zeroes of polynomial p(x) = $3x^2 + 2x + 1$, find the polynomial whose zeroes are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$.
- 33. Solve the system of equations: $\frac{1}{5x} + \frac{1}{6y} = 12$ $\frac{1}{3x} \frac{3}{7y} = 8$
- 34. Two water taps together can fill a tank in $9\frac{3}{8}$ hours. The tap of a larger diameter takes 10 [4] hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.
- 35. The sum of the first three numbers in an Arithmetic Progression is 18. If the product of the first and the third term is 5 times the common difference, find the three numbers.
- 36. The sum of digits of a two digit number is 13. If the number is subtracted from the one obtained by interchanging the digits. The result is 45. What is the number?
- 37. A rectangular field is 20 m long and 14 m wide. There is a path of equal width all round it. Having an area of 111 sq.m. Find the width of the path.