Padmavati International School

Hosur-Rabkavi

CLASS 09 - MATHEMATICS PERIODIC TEST - I

Time Allowed: 3 hours **Maximum Marks: 80**

General Instructions:

This question paper contains 40 questions divided into four sections A,B,C and D.Section A contains twenty MCQ of 1 marks each, Section B contains six questions of 2 marks each, Section C contains eight questions of 3 marks each and Section D contains six questions of 4 marks each.

All questions are compulsory. However internal choice is given.

Use of calculator is not allowed.

All questions are compulsory. **Section A** If a, m, n are positive integers, then $\{\sqrt[m]{\sqrt[n]{a}}\}^{mn}$ is equal to 1. [1] b) $a^{\frac{m}{n}}$ a) amn d) 1 c) a The value of $\left(\frac{12^{\frac{1}{5}}}{\frac{1}{27^{\frac{1}{5}}}}\right)^{\frac{5}{2}}$ [1] 2. a) none of these c) $\frac{12}{27}$ A number which can neither be expressed as a terminating decimal nor as a repeating 3. [1] decimal is called a) a rational number b) an irrational number c) a whole number d) an integer The simplest form of 0.123 is [1] 4. b) $\frac{37}{330}$ a) none of these c) $\frac{41}{330}$ A polynomial of degree ____ is called a cubic polynomial. 5. [1]

a) 3 b) 2 d) 0 c) 1 If $f(x) = x^2 - 5x + 1$, then the value of f(2) + f(-1) is [1] 6. a) 2 b) 1

- 1	•
c	- 4
	- 4

d) -1

A polynomial of degree ____ is called a quadratic polynomial. 7.

[1]

a) 3

b) 1

c) 2

d) 0

If $x^3-\frac{1}{x^3}=14$, then $x-\frac{1}{x}=$ 8.

[1]

a) 2

b) 3

c) 4

d) 5

9. Abscissa of a point is positive in: [1]

a) quadrant I and IV

b) quadrant II and III

c) quadrant I only

d) quadrant IV only

10. The point which lies on y-axis at a distance of 6 units in the positive direction of y-axis is [1]

a) (-6, 0)

b) (0, -6)

c)(6,0)

d) (0, 6)

In Figure, coordinates of P are 11.

[1]

a) (-2, 4)

b) (-4, 2)

c) (4, -2)

d) (2, -4)

12. The point at which the two co-ordinate axes meet is called the [1]

a) origin

b) abscissa

c) ordinate

d) quadrant

13. If two interior angles on the same side of a transversal intersecting two parallel lines are in [1] the ratio 2:3, then the greatest of two angles is

a) 72°

b) 54°

c) 36°

d) 108°

Two straight lines AB and CD intersect one another at the point O. If \angle AOC+ \angle COB+ \angle BOD = [1] 14. 274°, then ∠AOD =

a) 86°

b) 137°

In the given figure, AB \parallel CD. If \angle EAB = 50° and \angle ECD = 60°, then \angle AEB =? 15.

[1]

a) 50⁰

b) 60°

c) 55°

- d) 70°
- 16. In the given figure, AB \parallel CD, If \angle ABO = 45° and \angle COD = 100° then \angle CDO = ?

a) 30°

b) 25°

c) 45°

- d) 35°
- In the given figure, two rays BD and CE intersect at a point A. The side BC of \triangle ABC have been 17. produced on both sides to points F and G respectively. If $\angle {\rm ABF} = x^{\circ}$, $\angle ACG = y^{\circ}$ and

a) x + y - 180

b) x + y + 180

c) 180 - (x + y)

- d) $x + y + 360^{\circ}$
- In the adjoining figure, BC = AD, CA \perp AB and BD \perp AB. The rule by which $\triangle ABC\cong\triangle BAD$ 18. [1] is

a) ASA

b) RHS

c) SSS

- d) SAS
- PQR is a right-angled triangle in which $\angle P = 90^{\circ}$ and PQ = PR. What is the value of $\angle Q$ and $\angle R$ [1] 19.
 - a) 45°, 45°

b) 30°, 60°

c) 40°, 50°

- d) 20°, 60°
- In \triangle ABC, if \angle A = 100°, AD bisects \angle A and AD \perp BC. Then, \angle B = 20.

[1]

a) 50°

b) 40°

Section B

- 21. Find the value of a and b: $\frac{3-\sqrt{5}}{3+2\sqrt{5}}=a\sqrt{5}-\frac{19}{11}$
- 22. Evaluate: $\left[(16)^{\frac{1}{2}} \right]^{\frac{1}{2}}$.
- 23. Evaluate by using identities: 103×107
- 24. Which of the following points lie on the x-axis? [2]
 - i. A (0,8)
 - ii. 6(4,0)
 - iii. C(0,-3)
 - iv. D (-6,0)
 - v. E (2,1)
 - vi. F(-2, -1)
 - vii. G (-1, 0)
 - viii. H(0, -2)
- 25. Two supplementary angles are in the ratio of 3 : 7. Find the angles. [2]
- 26. If the sides of a triangle are produced in order, prove that the sum of the exterior angles so [2] formed is equal to four right angles.

- 27. Express $0.4\overline{7}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$
- 28. If $\sqrt{2}$ =1.4142, find the value of $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$.
- 29. Factorise : $x^3 3x^2 9x 5$ [3]
- 30. Find the remainder when x^3+3x^2+3x+1 is divided by x
- 31. The three vertices of a square ABCD are A(3, 2), B (-2, 2) and D (-3, 3). Plot these points on a graph paper and hence, find the coordinates of C. Also, find the area of square ABCD.
- 32. If in figure, bisectors AP and BQ of the alternate interior angles are parallel, then show that l = [3] | | m.

33. In the given figure, if AB $\mid \mid$ CD, \angle APQ = 50° and \angle PRD = 127°, find x and y.

34. ABC is an isosceles triangle in which AC = BC. AD and BE are respectively two altitudes to sides [3] BC and AC. Prove that AE = BD.

[3]

[3]

- 35. Visualize the representation of $2.\overline{32}$ on the number line up to 4 decimal places.
- 36. If $a = 3 2\sqrt{2}$, find the value of $a^2 \frac{1}{a^2}$. [4]
- 37. If $(x^3 + ax^2 + bx + 6)$ has (x 2) as a factor and leaves a remainder 3 when divided by (x 3), find the values of a and b.
- 38. Plot the points P (1, 0), Q (4, 0) and S (1, 3). Find the coordinates of the point R such that PQRS [4] is a square.
- 39. In the given figure, $1 \parallel$ m and a transversal t cuts them. If $\angle 1 : \angle 2 = 5 : 4$, find the measure [4] of each of the marked angles.

40. In figure, \angle BCD = \angle ADC and \angle ACB = \angle BDA. Prove that AD = BC and \angle A = \angle B. [4]

[4]

SECTION-B

OR (23) Expand $(\frac{1}{3}x - \frac{2}{3}y)^3$

OR (26) In figure OA = OB and OC = OD , Show that

- Δ AOB \cong Δ BOC and (i)
- (ii) AD || BC.

SECTION -C

OR (31) Plot the points A(-2,3) B(-2,0) C(2,0) and (2,6) on the graph paper. Join them consecutively and find the length of BC and AB . Also find the area of ΔABC .

OR (34) In the given parallelogram ABCD two points P and Q are taken on the diagonal BD such that DP = BQ. Show that

- (i) $\triangle APD \cong \triangle CQB$
- $\Delta AQB \cong \Delta CPD$ (ii)
- \square APCQ is a parallelogram. (iii)

SECTION-D

OR (35) Express 1. 3 2 + 0. 35 in the form $\frac{p}{q}$ where p and q are integers and $q \neq o$.

OR (39) In figure $PQ \perp PR$, $QP \parallel RL$, $\angle RQT = 38^{\circ}$, $\angle QTL = 75^{\circ}$, $Find \ x \ and \ y$.

