Choose the correct option:

- 1. Which of the following is a row matrix?

 - (a) matrix P of order 2×2 (b) matrix Q of order 1×2 (c) matrix R of order 2×1 (d) matrix S of order 3×2
- 2. The order of a matrix is 2×3 . It has:
 - (a) 5 elements
- (b) 6 elements
- (c) 1 element
- (d) none of these
- 3. If $A = \begin{bmatrix} 4 & -2 \\ 5 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 5 \\ -4 & -2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$, then the value of A + B C is:
 - (a) $\begin{bmatrix} 6 & 1 \\ 3 & 0 \end{bmatrix}$
- (b) $\begin{bmatrix} 6 & 0 \\ 3 & 1 \end{bmatrix}$
- (c) $\begin{bmatrix} 6 & 3 \\ 0 & 1 \end{bmatrix}$
- (d) $\begin{bmatrix} 6 & 6 \\ 3 & 1 \end{bmatrix}$

- **4.** If $3[4 \ x] + 2[y \ -3] = [10 \ 0]$, then:
 - (a) x = 1, y = 0
- (b) x = -1, y = -2
- (c) x = 2, y = -1
- (d) x = -2, y = 1
- 5. Order of matrix A is 2×3 and the order of matrix B is 3×1 . The order of the matrix AB is:
 - (a) 2×1

(b) 1×2

(c) 3×1

(d) 2×3

- 6. Which of the following is a diagonal matrix?
- (b) $\begin{vmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{vmatrix}$ (c) $\begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \end{bmatrix}$
- (d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

- 7. In a null matrix:
 - (a) all the elements are 0
 - (c) every non-diagonal element is 0

- (b) every diagonal element is 0
- (d) every element is 1.

- 8. [1 8 9] is a:
 - (a) row matrix
- (b) column matrix
- (c) diagonal matrix
- (d) null matrix

- 9. The transpose of matrix $\begin{bmatrix} 2 & -1 & 4 \\ 1 & 7 & 3 \\ -4 & 1 & 5 \end{bmatrix}$ is :
 - (a) $\begin{bmatrix} 2 & 1 & 4 \\ -1 & 1 & 5 \\ 4 & 7 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 4 & -1 \\ 1 & 3 & 7 \\ -4 & 5 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 4 & 2 \\ 7 & 3 & 1 \\ 1 & 5 & -4 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 1 & -4 \\ -1 & 7 & 1 \\ 4 & 3 & 5 \end{bmatrix}$

- 10. The order of matrix A is 2×3 and that of B is 3×1 .
 - (a) AB is possible, but BA is not possible
- (b) BA is possible but AB is not possible

(c) AB as well as BA are not possible

- (d) AB as well as BA are possible
- 11. If $A = \begin{bmatrix} 2 & -4 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ 0 & 5 \end{bmatrix}$, then the value of B + A is:
- (b) $\begin{vmatrix} 6 & 2 \\ -1 & 4 \end{vmatrix}$
- (c) $\begin{bmatrix} 1 & -2 \\ -4 & 1 \end{bmatrix}$

- 12. If $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ -3 & 2 \end{bmatrix}$, then AB is equal to :
- (b) $\begin{vmatrix} 8 & -1 \\ 5 & 2 \end{vmatrix}$
- (c) $\begin{bmatrix} -13 & 8 \\ -8 & 5 \end{bmatrix}$

13. If
$$A = \begin{bmatrix} 3 & -4 \\ 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 \\ 5 & 7 \end{bmatrix}$, then the order of $3A - 2B$ is :

(a)
$$2 \times 1$$

(b)
$$4 \times 4$$

(c)
$$1 \times 2$$

(d)
$$2 \times 2$$

14. If
$$A = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix}$, then $B - A$ is equal to :

(a)
$$\begin{bmatrix} 4 & -1 \\ 6 & -2 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -1 & -8 \\ 5 & -2 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} -1 & 8 \\ 5 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -1 & -8 \\ 5 & -2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -1 & 8 \\ 5 & 4 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -2 & 4 \\ -1 & -2 \end{bmatrix}$$

15. If
$$M = \begin{bmatrix} 1 & -2 \end{bmatrix}$$
, $N = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$, then the order of MN is:

(a)
$$1 \times 2$$

(c)
$$1 \times 1$$

(d)
$$2 \times 2$$

16. If
$$A = \begin{bmatrix} -2 & 3 \\ 4 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 2 \\ -7 & 3 \end{bmatrix}$, then transpose of matrix $(A + B)$ is:

(a)
$$\begin{bmatrix} 3 & 5 \\ -3 & 8 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 & -3 \\ 5 & 8 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 3 & 5 \\ -3 & 8 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 3 & -3 \\ 5 & 8 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 3 & 8 \\ -3 & 5 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 3 & 5 \\ -8 & 3 \end{bmatrix}$$

17. If
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & -1 \\ 2 & -1 \end{bmatrix}$, then $A^T - B^T$ is equal to :

(a)
$$\begin{bmatrix} 1 & -1 \\ 4 & 2 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 7 & -1 \\ 2 & 5 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} -3 & -1 \\ 2 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 7 & -1 \\ 2 & 5 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -3 & -1 \\ 2 & 4 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -3 & -3 \\ 2 & 5 \end{bmatrix}$$

18. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}$ and $AB = \begin{bmatrix} x & 0 \\ 9 & 0 \end{bmatrix}$, then the order of the matrix BA is:

(a)
$$1 \times 2$$

(b)
$$2 \times 1$$

(c)
$$2 \times 3$$

(d)
$$2 \times 2$$

19. If
$$A = \begin{bmatrix} 2 & 0 \\ -3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$, then the matrix BA is :

(a)
$$\begin{bmatrix} -3 & 1 \\ -13 & 3 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -4 & 5 \\ -2 & 7 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} -3 & 2 \\ 5 & -7 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -4 & 5 \\ -2 & 7 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -3 & 2 \\ 5 & -7 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 4 & -1 \\ 2 & 19 \end{bmatrix}$$

20. If
$$A = \begin{bmatrix} x & 3 \\ y & 3 \end{bmatrix}$$
 and $A^2 = 3I$, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ the order of A^2 is :

(b)
$$2 \times 3$$

(c)
$$1 \times 2$$

(d)
$$3 \times 2$$