Chapter 8: Percentage and Its Applications

Exercise 8.1

1. (a)
$$\frac{2}{3} = \left(\frac{2}{3} \times 100\right)\% = \frac{200}{3}\% = 66.67\%$$

(c)
$$2:9=\frac{2}{9}=\frac{2}{9}\times 100\%=\frac{200}{9}\%=22.22\%$$

(d)
$$1.05 = 1.05 \times 100\% = 105\%$$

(e)
$$2\frac{3}{4} = \frac{11}{4} = \frac{11}{4} \times 100\% = 275\%$$

3. (a)
$$4\% = 4 \times \frac{1}{100} = \frac{4}{100} = \frac{1}{25}$$

(b)
$$3.5\% = 3.5 \times \frac{1}{100} = \frac{35}{1000} = \frac{7}{200}$$

(c)
$$\frac{7}{8}\% = \frac{7}{8} \times \frac{1}{100} = \frac{7}{800}$$

(d)
$$25\% = 25 \times \frac{1}{100} = \frac{25}{100} = \frac{1}{4}$$

(e)
$$2.4\% = 2.4 \times \frac{1}{100} = \frac{24}{1000} = \frac{3}{125}$$

Let x be the missing number.

$$4\% \text{ of } x = 8$$

$$\Rightarrow \frac{4}{100} \times x = 8$$

$$\Rightarrow x = 200$$

2. (a)
$$15\% = 15 \times \frac{1}{100} = 0.15$$

(b)
$$42\% = 42 \times \frac{1}{100} = 0.42$$

(c)
$$0.004\% = 0.004 \times \frac{1}{100} = 0.00004$$

(d)
$$35\% = 35 \times \frac{1}{100} = 0.35$$

(e)
$$\frac{1}{4}\% = \frac{1}{4} \times \frac{1}{100} = 0.0025$$

4. (a)
$$\frac{25}{8}$$
% of 150 + 12% of 250

$$= \frac{25}{800} \times 150 + \frac{12}{100} \times 250$$
$$= \frac{75}{16} + 30$$

(b)
$$2\frac{3}{4}\%$$
 of $200 + \frac{1}{2}\%$ of 150

$$=\frac{11}{400}\times200+\frac{1}{200}\times150$$

$$=\frac{11}{2}+\frac{3}{4}$$

$$=\frac{22+3}{4}$$

$$=\frac{25}{4}$$

Let x be the missing number.

$$60\% \text{ of } x = 6$$

$$\Rightarrow \frac{60}{100} \times x = 6$$

$$\Rightarrow x = \frac{600}{60}$$

$$\Rightarrow x = 10$$

6.

The difference of two numbers is 4496.

Let the numbers be x and x + 4496.

$$2.5\%$$
 of $(x + 4496) = 22.5\%$ of x

$$\Rightarrow \frac{2.5}{100}(x + 4496) = \frac{22.5}{100}x$$

$$\Rightarrow \frac{25}{1000}(x+4496) = \frac{225}{1000}x$$

$$\Rightarrow \frac{1}{40}(x+4496) = \frac{9}{40}x$$

$$\Rightarrow$$
 (x + 4496) = 9x

$$\Rightarrow$$
 8x = 4496

$$\Rightarrow x = 562$$

$$\Rightarrow$$
 x + 4496 = 562 + 4496 = 5058

Thus, the numbers are 562 and 5058.

7.

It is given that 32% of 60% of 25% of the number is 480.

Let x be the number.

32% of 60% of 25% of x = 480

$$\Rightarrow \frac{32}{100} \times \frac{60}{100} \times \frac{25}{100} \times x = 480$$

$$\Rightarrow x = \frac{480 \times 100 \times 100 \times 100}{32 \times 60 \times 25}$$

$$\Rightarrow x = 10,000$$

Thus the required number is 10,000.

8.

Let the number be x.

$$64\% \text{ of } x - 48\% \text{ of } x = 79872$$

$$\Rightarrow \frac{64}{100}x - \frac{48}{100}x = 79872$$

$$\Rightarrow \frac{64-48}{100}x = 79872$$

$$\Rightarrow \frac{16x}{100} = 79872$$

$$\Rightarrow x = \frac{79872 \times 100}{16}$$

$$\Rightarrow x = 499200$$

So 25% of 499200 =
$$\frac{25}{100}$$
 × 499200 = 124800.

Thus the required number is 1,24,800.

Let the number be x.

$$\frac{1}{8}x = 45$$

$$x = 360$$

So 255% of 360 =
$$\frac{255}{100}$$
 × 360 = 918

Thus the required number is 918.

10.

Let the monthly income be ξx .

Monthly saving = ₹18900

$$\Rightarrow$$
 18% of $x = 18900$

$$\Rightarrow \frac{18}{100}x = 18900$$

$$\Rightarrow x = \frac{18900 \times 100}{18}$$

$$\Rightarrow x = 105000$$

Thus the monthly income is ₹1,05,000.

Exercise 8.2

1. (a) It is given that C.P. = ₹760 and S.P. = ₹875.

Profit% =
$$\frac{\text{Profit}}{\text{CP}} \times 100 = \frac{115}{760} \times 100 = 15.13\%$$

(b) It is given that C.P. = ₹260 and S.P. = ₹1197.

Profit% =
$$\frac{\text{Profit}}{\text{C.P.}} \times 100 = \frac{937}{260} \times 100 = 360.38\%$$

(c) It is given that C.P. = ₹6890 and S.P. = ₹6250.

Loss = C.P. – S.P. =
$$6890 - 6250 = ₹640$$

Loss% =
$$\frac{loss}{C.P.} \times 100 = \frac{640}{6890} \times 100 = 9.28\%$$

2. (a) It is given that C.P. = ₹1550 and profit% = 5%.

S.P. =
$$\left(\frac{100 + \text{Profit}\%}{100}\right) \times \text{C.P.} = \left(\frac{100 + 5}{100}\right) \times 1550$$

= $\frac{105}{100} \times 1550 = ₹1627.50$

(b) It is given that C.P. = ₹915 and profit% = $6\frac{2}{3}$ %.

S.P. =
$$\left(\frac{100 + \text{Profit}\%}{100}\right) \times \text{C.P.} = \left(\frac{100 + \frac{20}{3}}{100}\right) \times 915$$

= $\frac{320}{300} \times 915 = ₹976$

(c) It is given that C.P. = ₹875 and loss% = 12%.

S.P. =
$$\left(\frac{100 - \text{Loss}\%}{100}\right) \times \text{C.P.} = \left(\frac{100 - 12}{100}\right) \times 875$$

= $\frac{88}{100} \times 875 = ₹770$

3. (a) It is given that S.P. = ₹810 and profit% = 8%

C.P. =
$$\left(\frac{100 \times \text{S.P.}}{100 + \text{Profit}\%}\right) = \left(\frac{100 \times 810}{100 + 8}\right) = \frac{81000}{108} = ₹750$$

(b) It is given that S.P. = ₹987 and loss% = 6%

C.P. =
$$\left(\frac{100 \times \text{S.P.}}{100 - \text{Loss\%}}\right) = \left(\frac{100 \times 987}{100 - 6}\right) = \frac{98700}{94} = ₹1,050$$

(c) It is given that S.P. = ₹371 and profit% = 6%

C.P. =
$$\left(\frac{100 \times \text{S.P.}}{100 + \text{Profit}\%}\right) = \left(\frac{100 \times 371}{100 + 6}\right) = \frac{37100}{106} = ₹350$$

Let the C.P. of 1 toy be ₹100.

From equation (1), S.P. of 21 toys = ₹1400

Loss% =
$$\frac{\text{Loss}}{\text{C.P.}} \times 100 = \frac{700}{2100} \times 100 = \frac{100}{3} = 33.33\%$$

... (1)

Thus loss percent is 33.33%

5. C.P. of 60 oranges = ₹100

Rotten oranges = 20

Loss% =
$$\frac{\text{Loss}}{\text{C.P.}} \times 100 = \frac{10}{100} \times 100 = 10\%$$

Let the C.P. be
$$\langle x \rangle$$
.

Profit% =
$$\frac{\text{Profit}}{CP} \times 100$$

$$\Rightarrow 25 = \frac{50 - x}{x} \times 100$$

$$\Rightarrow 25x = 5000 - 100x$$

$$\Rightarrow$$
 125x = 5000

If gain % is 30%, then

$$Profit\% = \frac{Profit}{C.P.} \times 100$$

$$\Rightarrow 30 = \frac{\text{S.P.} - 40}{40} \times 100$$

$$\Rightarrow$$
 1200 = 100 × S.P. - 4000

$$\Rightarrow$$
 1200 + 4000 = 100 × S.P.

$$\Rightarrow$$
 S.P. = $\frac{5200}{100}$ = 52

The shopkeeper should sell the toy for ₹52 to gain 30%.

7. S.P. of shirt 1 =

S.P. =
$$\frac{\text{C.P.} \times (100 + \text{Profit\%})}{100} = \frac{775 \times (100 + 10)}{100}$$

= $\frac{775 \times 110}{100} = 852.50$

$$=\frac{775\times110}{100}=852.50$$

S.P. of shirt 2 =

S.P. =
$$\frac{\text{C.P.} \times (100 - \text{Loss\%})}{100} = \frac{775 \times (100 - 5)}{100} = \frac{775 \times 95}{100}$$

= 736.25

Total C.P. of both the shirt = $775 \times 2 = ₹1550$

Total S.P. of both the shirt = 852.50 + 736.25 = ₹1588.75

Profit% =
$$\frac{\text{Profit}}{\text{C.P.}} \times 100 = \frac{38.75}{1550} \times 100 = 2.5\%$$

8. C.P. of variety 1 apples = 20 × 55 = ₹1,100

Total C.P. of both the variety of apples = 1100 + 1125 = $\frac{2}{2}.225$

Total weight of the both the type of variety = 20 + 25 = 45

S.P. of mix apples = ₹50 per kg.

Profit% =
$$\frac{\text{Profit}}{\text{C.P.}} \times 100 = \frac{25}{2225} \times 100 = 1.12\%$$

9. Let C.P. of the table be x.

S.P. =
$$\frac{\text{C.P.} \times (100 - \text{Loss\%})}{100} = \frac{x \times (100 - 6)}{100} = \frac{x \times 94}{100}$$

As given S.P. = 3500,

$$3500 = \frac{94x}{100} \Rightarrow x = \frac{3500 \times 100}{94} = 3723.40$$

New S.P. = 4000

$$Profit = 4000 - 3723.40 = 276.60$$

Profit% =
$$\frac{\text{Profit}}{\text{C P}} \times 100 = \frac{276.60}{2723.40} \times 100 = 7.43\%$$

10. Purchase price of motorcycle = ₹73,500

$$Loss = 86400 - 84240 = 2160$$

Loss\% =
$$\frac{\text{Loss}}{\text{C.P.}} \times 100 = \frac{2160}{86400} \times 100 = 2.5\%$$

11. Loss = 10% = 10/100 = 1/10; S.P. = 4500

So, CP of the dinner set =
$$\frac{10}{9}$$
 × 4500 = ₹ 5000

Required selling price to gain 20% = ₹5000 + 20% of ₹5000 = ₹ (5000 + 1000) = ₹6,000

12.
$$CP = 5000 + 500 + 300 = 5800$$
 (Inclusive of overhead expenses)

SP = 5500; Here, CP > SP. Thus, a loss is occurred.

$$Loss = CP - SP$$

$$Loss = 5800 - 5500 = 300$$

Loss % =
$$(Loss/CP) \times 100$$

Loss% =
$$(300/5800) \times 100 = 5.17\%$$

13. Let the cost price be x.

Selling price =
$$\frac{100+gain\%}{100}$$
 × $CP = \frac{100+7}{100}$ × $x = \frac{107x}{100}$
Selling price after ₹ 75 is added = $\frac{100+gain\%}{100}$ × $CP = \frac{100+12}{100}$ × $x = \frac{112x}{100}$
According to the problem, $\frac{112x}{100} - \frac{107x}{100} = 75$
⇒ $\frac{5x}{100} = 75$ ⇒ $5x = 7500$ ⇒ $x = 1500$

14. Let the C.P. of first set be $\mathcal{E}x$.

And the C.P. of the second set will be
$$\stackrel{?}{=}$$
 (41000 – x)

S.P. of the first set = $\frac{100 + profit \%}{100} \times CP = \frac{100 + 15}{100} \times x$ (given profit = 15 %)

= $\frac{115}{110}x$

S.P. of the second set = $\frac{100 - loss \%}{100} \times C.P. = \frac{100 - 10}{100} \times (41000 - x)$ (given loss = 10

S.P. of the second set =
$$\frac{100 - loss \%}{100} \times \text{C.P.} = \frac{100 - 10}{100} \times (41000 - x)$$
 (given loss = %)

$$=\frac{90}{100}\times(41000-x)$$

It is given that the selling price of both the T.V set is equal.

$$\frac{115}{110} \times = \frac{9}{10} \times (41000 - x) \implies x = 18000$$

Hence, the cost price of first T.V set is ₹ 18000 and for the second one price will be (41000 – 18000 = ₹ 23000).

15. No, Kirti is not right because gain = 3000 – 2500 = 500, and not 5000.

Exercise 8.3

Net S.P. =
$$M.P. - discount$$

$$Discount\% = \frac{Discount}{M.P.} \times 100$$

$$M.P. = \frac{100 \times S.P.}{100 - Discount\%}$$

$$M.P. = \frac{100 \times S.P.}{100 - Discount\%}$$

$$\Rightarrow S.P. = \frac{M.P. \times (100 - Discount\%)}{100}$$

Hence S.P =
$$\frac{900 \times (100 - 15)}{100} = \frac{900 \times 85}{100} = ₹765$$

M.P. =
$$\frac{100 \times \text{S.P.}}{100 - \text{Discount%}} = \frac{100 \times 10000}{100 - 20}$$

= $\frac{1000000}{80}$ = ₹12,500

Discount% =
$$\frac{\text{Discount}}{\text{M.P.}} \times 100 = \frac{240}{960} \times 100 = 25\%$$

4. Given: M.P. = ₹28,600, Discount% = 25, and Profit% = 10

$$M.P. = \frac{100 \times S.P.}{(100 - Discount\%)}$$

$$\Rightarrow S.P. = \frac{M.P. \times (100 - Discount\%)}{100}$$

Hence S.P of laptop =
$$\frac{28600 \times (100 - 25)}{100} = \frac{25600 \times 75}{100}$$

Now, S.P. of laptop = ₹21,450, Profit% earned on laptop = 10

S.P. =
$$\frac{\text{C.P.} \times (100 + \text{Profit\%})}{100}$$

 $\Rightarrow \text{C.P.} = \frac{\text{S.P.} \times 100}{100 + \text{Profit\%}} = \frac{21450 \times 100}{100 + 10} = \frac{21450 \times 100}{110}$
= ₹19,500

Thus the cost price of the laptop is ₹19,500.

Given: S.P. = ₹322 and Discount% = 8

M.P. =
$$\frac{100 \times \text{S.P.}}{100 - \text{Discount}\%} = \frac{100 \times 322}{100 - 8} = \frac{32200}{92} = 350$$

Thus the marked price of the article is ₹350.

 Given: M.P. of table = ₹5,000 and Successive discount = 15% and 20%

S.P. of table after the second discount = {(100% - Second discount%) of (100% - First discount%)} of M.P. of table

=
$$\{(100\% - 20\%) \times (100\% - 15\%)\}$$
 of 5000

$$=(80\% \times 85\%) \text{ of } 5000$$

$$=\frac{80}{100}\times\frac{85}{100}\times5000=3400$$

Thus the selling price of the dining table is ₹3,400.

 Given: S.P. of cupboard = ₹4,590 and successive discount = 25% and 10%

S.P. of cupboard after the second discount = $\{(100\% - \text{Second discount\%})\}$ of $(100\% - \text{First discount\%})\}$ of M.P. of cupboard

S.P. of cupboard after the second discount

{(100% - Second discount%) of (100% - First discount%)}

$$= \frac{4590}{\{(100\% - 25\%) \times (100\% - 10\%)\}} = \frac{4590}{75\% \times 90\%}$$

$$= \frac{4590}{\frac{75}{100} \times \frac{90}{100}}$$

$$= \frac{4590 \times 100 \times 100}{75 \times 90} = 6800$$

Thus the marked price of the cupboard is ₹6,800.

$$GST = S.P. - M.P. = 882 - 840 = 42$$

Rate of GST =
$$\frac{\text{GST}}{\text{M.P.}} \times 100 = \frac{42}{840} \times 100 = 5$$

Thus the rate of GST is 5%.

Given: S.P. of watch = ₹2,362.50 and GST rate = 12%

Let the M.P. of watch = m,

Selling Price of watch after GST = m + 12% of m

$$m(1 + 12\% \text{ of } 1) = ₹2362.50$$

$$m(1 + 0.12) = ₹2362.50$$

$$m = \frac{2362.50}{1.12} = 2109.375$$

Thus the original price of the watch is ₹2,109.34.

10. Given: M.P. of television = ₹14,650 and GST rate = 18%

S.P. of television =
$$M.P. + GST$$
 of $M.P$.

$$= 14650 + \frac{18}{100} \times 14650$$

Thus the cost of television set is ₹17287.

Given: S.P. of scooter = ₹69,749.80 and M.P. of scooter =₹59,110

$$GST = S.P. - M.P. = 69749.80 - 59110 = ₹10,639.80$$

Rate of GST =
$$\frac{GST}{MP} \times 100 = \frac{10639.80}{50110} \times 100 = 18\%$$

Thus the rate of GST is 18%.

12. Given: C.P. of medicine = ₹625 and GST rate = 5%

GST = 5% of 625 =
$$\frac{5 \times 625}{100}$$
 = 31.25

Thus the amount to be paid for the medicine is ₹656.25.

13.

Discount offered by shopkeeper = 10%

S.P. of 1blankets = (100 - Discount%) % of M.P. of 1 blanket Number of blankets that can be purchased with ₹1,800

=
$$(100 - 10)\%$$
 of $500 = 90\%$ of $500 = \frac{90}{100} \times 500 = 450$

Hence amount still left with Avinash = M.P. of 36 blankets - S.P. of 36 blankets = 18000 - 16200 = ₹1,800

$$=\frac{1800}{450}=4 \text{ blankets}$$

Thus Avinash can purchase 4 extra blankets.

14. Use formula, equivalent discount = (A + B) - (AB/100) where A = first discount, B = second discount.

Thus, equivalent discount = 29 - 1 = 28%.

Alternatively, 25% is same as 0.25 in decimals and 4% is same as 0.04 in decimals. Now an equivalent discount for successive discounts of 25% and 4% can be given as:

Equivalent discount for successive discounts 25% and $4\% = 1 - \{1 - 0.25\} \times (1 - 0.04)$

$$= 1 - \{0.75 \times 0.96\} = 1 - 0.72 = 0.28 = 28\%$$