TANGENT PROPERTIES OF CIRCLES

EXERCISE 19A

1. In the circle, OA is radius and AP is the tangent to the circle.

$$OA = 8 \text{ cm}, OP = 10$$

$$OA \perp AP. \text{ So}, \angle OAP = 90^{\circ}$$

In right $\triangle OAP$, we have

$$OP^2 = OA^2 + AP^2$$
 [Pythagoras theorem]

$$\Rightarrow$$
 $(10)^2 = (8)^2 + AP^2 \Rightarrow 100 = 64 + AP^2$

$$\Rightarrow$$
 $AP^2 = 100 - 64 = 36 = (6)^2 \Rightarrow AP = 6 \text{ cm}$

2. In the circle, OA is radius and AP is the tangent drawn from P.

$$\therefore \angle OAP = 90^{\circ}$$
. So, $OA \perp AP$

Now, in right $\triangle OAP$, we have

$$OP^2 = OA^2 + AP^2$$
 [Pythagoras Theorem]

$$\Rightarrow (17)^2 = OA^2 + (15)^2$$

$$\Rightarrow 289 = OA^2 + 225$$

$$\Rightarrow OA^2 = 289 - 225 = 64 = (8)^2$$

$$\therefore OA = 8$$

Hence radius of the circle = 8 cm.

Radius (R) of the outer circle = 26 cm.

AB is the chord of the outer circle and tangent to the inner circle at P.

Join OA and OP.

- : AB is tangent and OP the radius of the inner circle.
- :: OP \perp AB and P bisects the chord AB of the outer circle.

$$OA^2 = AP^2 + OP^2$$

15 cm

10 cm

[Pythagoras Theorem]

$$\Rightarrow AP^2 = 676 - 100 = 576 = (24)^2$$

$$\therefore$$
 AP = 24 cm

Henc, $AB = 2AP = 2 \times 24 = 48$ cm.

A,B and C are the centres of the three circles, such that circle with centre C touches the other two circles externally.

Radius of circle with centre A = 9 cm.

Radius of circle with centre B = 2 cm.

$$AB = 17$$
 cm, and $\angle ACB = 90^{\circ}$

Let radius of the third circle = r

$$AC = (9 + r)$$
 cm and $BC = (2 + r)$ cm.

Now, in right $\triangle ACB$, we have

$$AB^2 = AC^2 + BC^2$$

$$\Rightarrow$$
 (17) 2 = (9 + r)2 + (2 + r)2

$$\Rightarrow$$
 289 = 81 + 18r + r2 + 4 + 4r + r2

$$\Rightarrow$$
 289 = 2r2 + 22r + 85

$$\Rightarrow$$
 2r2 + 22r + 85 - 289 = 0

$$\Rightarrow$$
 2r2 + 22r - 204 = 0

$$\Rightarrow$$
 r2 + 11r - 102 = 0 [Dividing by 2]

Now,
$$r2 + 17r - 6r - 102 = 0$$

$$\Rightarrow$$
 r (r + 17) - 6 (r + 17) = 0

$$\Rightarrow$$
 (r + 17) (r - 6) = 0

[Zero product rule]

Either r + 17 = 0 then r = -17, but it is not admissible.

Or
$$r-6 = 0$$
, then $r = 6$

Hence, radius of the third circle (r) = 6 cm

5. Given: Two circles touch each other externally at C. Through C, a common tangent is drawn. From a point P on it, tangents PA and PB are drawn to their respective circles.

To prove. PA = PB

Proof: From P, PA and PC are the tangents drawn to the first circle

$$\therefore PA = PC \qquad \dots (i)$$

Similarly, from P, PB and PC are the tangents drawn to the second circle.

$$\therefore PB = PC \qquad \dots (ii)$$

From (i) and (ii) we have, PA = PB. Hence proved

6. Given: Two circles touch each other at P internally. A common tangent is drawn from P. From a point T on it, TA and TB tangents are drawn to the given two circles.

To prove. TA = TB

Proof. : From T, TA and TP are the tangents to the first circle.

$$\therefore TA = TP \qquad \dots (i)$$

Similarly, From T, TB and TP are the tangents to the second circle

$$\therefore TB = TP \qquad \dots (ii)$$

From (i) and (ii), we have TA = TB. Hence proved.

7. Two circles with centre O and C touch each other externally at P.

Radius of the first circle is 18 cm and second circle is 8 cm

AB is the direct common tangent. From C, draw $CD \perp AO$ meeting OA at D.

$$\therefore OD = OA - AD = 18 - 8 = 10 \text{ cm}.$$

$$OC = OP + PC = 18 + 8 = 26 \text{ cm}$$
.

Now, in right \triangle ODC, we have

$$OC^2 = OD^2 + DC^2$$
 [Pythagoras Theorem]
 $\Rightarrow (26)^2 = (10)^2 + DC^2 \Rightarrow 676 = 100 + DC^2$
 $\Rightarrow DC^2 = 676 - 100 = 576 = (24)^2$

$$\therefore DC = 24 \text{ cm}$$

$$\therefore$$
 AB = DC = 24 cm.

8. Two circles with centre O and C are drawn of the radii 8 cm and 3 cm. Their centres are 13 cm apart.

AB is their common direct tangent. Join OA and CB.

Through C, draw a perpendicular CD to OA meeting it at D.

Now, OD = 8 - 3 = 5 cm, OC = 13 cm

Now, in right \triangle ODC, we have

$$OC^2 = OD^2 + DC^2$$
 [Pythagoras Theorem]
 $\Rightarrow (13)^2 = (5)^2 + DC^2$
 $\Rightarrow 169 = 25 + DC^2 \Rightarrow DC^2 = 169 - 25 = 144$
 $\therefore DC = \sqrt{144} = 12 \text{ cm}. \therefore AB = 12 \text{ cm}$ [:: AB = DC]

9. Two circles of radii 8 cm and 3 cm have O and C as their centres respectively. AB is their common direct tangent.

$$OA = 8 \text{ cm}, CB = 3 \text{ cm}, AB = 10 \text{ cm}.$$

OD = 8 cm - 3 cm = 5 cm and CD = AB = 10 cm.

Now, in right $\triangle DOC$, $OC^2 = OD^2 + DC^2$

[Pythagoras Theorem]

$$(5)^2 + (10)^2 = 25 + 100 = 125 = 25 \times 5$$

$$\therefore OC = \sqrt{25 \times 5} = 5\sqrt{5}$$

= 5 \times (2.236) = 11.18 cm

:. Distance between their centres = 11.18 cm.

10. Let PQ = 7 cm, QR = 8 cm and RP = 11 cm.

Let x, y, z be the radii of the three circle.

Then,
$$x + y = 7$$

 $y + z = 8$
 $z + x = 11$

...(i) ...(ii)

Adding (i) (ii) and (iii), we have

Adding (1) (11) and (111), we have
$$2(x+y+z) = 26 \implies x+y+z = \frac{26}{2} = 13$$
...(iv)

Subtracting (i) from (iv), we have

$$(x+y+z)-(x+y) = 13-7=6$$
 $\Rightarrow z=6$

Similarly

$$\{(x+y+z)-(y+z)\}=13-8=5 \implies x=5$$

 $\{(x+y+z)-(z+x)\}=13-11=2 \implies y=2$

Hence, radii of the three circle will be 5 cm, 2 cm and 6 cm.

11. $\triangle BAC$ is a right- angled triangle, right angle at A, AC = 12 cm BC = 13 cm. A circle with centre O is drawn in the triangle touching its sides at P, Q, R respectively.

Now, in right $\triangle BAC$, we have

$$BC^{2} = AC^{2} + AB^{2}$$

 $\Rightarrow (13)^{2} = (12)^{2} + AB^{2}$
 $\Rightarrow 169 = 144 + AB^{2} \Rightarrow AB^{2} = 25 = (5)^{2}$
 $\Rightarrow AB = 5 \text{ cm}$

[Pythagoras Theorem]

Now it is clear that APOR is square, where each side is x.

: CQ and CR are the tangents

$$\therefore$$
 CQ = CR

BP and BQ are the tangents.

$$\therefore$$
 BP = BQ

Now, CR = CA - AR

$$\Rightarrow$$
 CR = 12 - x \Rightarrow CQ = 12 - x ...(i)

Also, BP = AB - AP

$$\Rightarrow$$
 BP = $5 - x$

$$\Rightarrow$$
 BQ = 5 - x ...(ii)

Adding (i) and (ii), we have

$$CQ + BQ = 12 - x + 5 - x$$

$$BC = 17 - 2x$$

$$\Rightarrow 13 = 17 - 2x \Rightarrow 2x = 17 - 13 = 4$$

$$\therefore x = \frac{4}{2} = 2$$

Hence, value of x = 2 cm.

12. In $\triangle PQR$, $\angle Q = 90^{\circ}$ and PQ = 3 cm, QR = 4 cm

:.
$$PR = \sqrt{PQ^2 + QR^2} = \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \text{ cm}$$

A circle with centre O, is drawn which touches the ΔPQR at L, M, and N respectively.

Let O be the centre of the circle OL, OM, ON are joined.

Clearly, QLOM is a square and let OL = OM = r

$$\therefore$$
 RM = $(4-r)$ cm and PL= $(3-r)$ cm

But RM = RN and PL = PN [: Tangents from the outer points to the circle]

$$\therefore$$
 RN = 4 - r and PN = 3 - r.

But PR = 5 cm

$$\therefore 5 = 7 - 2r$$

$$\Rightarrow 2r = 7 - 5 = 2 \Rightarrow r = \frac{2}{2} = 1$$

Hence radius of the incircle is 1 cm.

13. Two concentric circles with centre O and radius OA and OB respectively. P and BP are the tangents drawn from P to the circles. Join OA, OB and OP.0 AP = 10 cm, OA = 6 cm, OB = 4 cm

 \therefore AP is tangent and OA is radius

$$\therefore OA \perp AP$$

Similarly, $OB \perp BP$

Now, in right $\triangle OAP$, we have

$$OP^2 = OA^2 + AP^2 = (6)^2 + (10)^2$$
 [Pythagoras Theorem]
= $36 + 100 = 136$...(i)

Similarly, in right \triangle OBP, we have

$$OP^2 = OB^2 + PB^2 = (4)^2 + PB^2$$
 [Pythagoras Theorem]
= $16 + PB^2$...(ii)

From (i) and (ii), we have $136 = 16 + PB^2$

$$\Rightarrow PB^2 = 136 - 16 = 120$$

$$\Rightarrow PB = \sqrt{120}$$
 cm = 10.95 cm.

14. $\triangle ABC$ is circumscribed and circle touches its sides AB, BC, CA, at P, Q and R respectively.

$$AP = 5$$
 cm, $BP = 7$ cm, $AC = 14$ cm and $BC = x$

From A, AP and AR are the tangents to the circle.

$$\therefore AP = AR \implies AR = 5 \text{ cm}.$$

$$\therefore CR = 14 \text{ cm} - 5 \text{ cm} = 9 \text{ cm}$$

Now from C, CR and CQ are the tangents.

$$\therefore CR = CQ \implies CQ = 9 \text{ cm}$$

Now, from B, BQ and BP are the tangents.

$$\therefore BP = BQ \implies BQ = 7 \text{ cm}.$$

:.
$$BC = BQ + CQ = 7 + 9 = 16$$
 cm.

Hence,
$$x = 16$$
 cm.

 Quadrilateral ABCD is circumscribed. A circle touches its sides AB, BC, CD and DA at P, Q, R and S respectively.

$$AP = 9$$
 cm, $BP = 7$ cm, $CQ = 5$ cm and $DR = 6$ cm

: From A, AP and AS are the tangents to the circle.

$$\therefore$$
 AP = AS = 9 cm.

Similarly,
$$BP = BQ = 7$$
 cm.

$$CQ = CR = 5 \text{ cm}.$$

And
$$DR = DS = 6 cm$$
.

Now, AB =
$$9 + 7 = 16$$
 cm.

BC =
$$7 + 5 = 12$$
 cm.

$$CD = 5 + 6 = 11 \text{ cm}$$

and DA =
$$6 + 9 = 15$$
 cm.

$$= AB + BC + CD + DA$$
$$= (16 + 12 + 11 + 15)cm = 54 cm.$$

16. The given circle touches the sides AB, BC CA and DA at P, Q, R and S respectively.

$$AB = 11 \text{ cm}$$
, $BC = x \text{ cm}$, $CR = 4 \text{ cm}$ and $AS = 6 \text{ cm}$.

 \therefore From A, AP and AS are the tangents to the D circle, therefore AP = AS = 6 cm.

$$\therefore BP = AB - AP = (11 - 6) \text{ cm}$$
$$= 5 \text{ cm}.$$

Similarly,
$$BP = PQ = 5 \text{ cm}$$

and
$$CQ = CR = 4 \text{ cm}$$

Now,
$$BC = BQ + CQ = BP + CR = 5 + 4 = 9$$
 cm.

Hence, x = 9 cm.

E

11 cm

 \therefore From A,AQ and AR are the tangents to the circle

$$\therefore AR = AQ = 15 \text{ cm}$$

Now, perimeter of
$$\triangle ABC = AB + AC + BC$$

$$= AB + AC + BP + CP = AB + AC + BQ + CR$$

$$= (AB + BQ) + (AC + CR) = AQ + AR$$

$$= 15 + 15 = 30$$
 cm.

18. From the figure, PA and PB are two tangents to the circle with centre O. $\angle APB = 40^{\circ}$

Join OA and OB.

Now,
$$\angle OAP = 90^{\circ}$$

[: OA is radius and PA is tangent]

Similarly,
$$\angle OBP = 90^{\circ}$$

But,
$$\angle OAP + \angle APB + \angle PBO + \angle AOB = 360^{\circ}$$

[Sum of angles of a quadrilateral]

$$\Rightarrow$$
 90° + 40° + 90° + \angle AOB = 360°

$$\Rightarrow$$
 220° + \angle AOB = 360°

$$\Rightarrow \angle AOB = 360^{\circ} - 220^{\circ}$$

$$\therefore \angle AOB = 2 \angle AOB$$

$$\Rightarrow \angle AQB = \frac{1}{2} \angle AOB \Rightarrow \angle AQB = \frac{1}{2} \times 140^{\circ} = 70^{\circ}$$

: AMBQ is a cyclic quadrilateral.

$$\therefore \angle AMB + \angle AQB = 180^{\circ}$$

$$\Rightarrow \angle AMB + 70^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle AMB = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

- 19. PA and PB are the tangents to the circle with center O. $\angle APB = 50^{\circ}$
 - (i) : OA is a radius and AP is the tangent to the circle.

$$\therefore OA \perp AP$$

Similarly, $OB \perp BP$

Now,
$$\angle OAP + \angle APB + \angle OBP + \angle AOB = 360^{\circ}$$

[Sum of angles of a quadrilateral]

$$\Rightarrow 90^{\circ} + 50^{\circ} + 90^{\circ} + \angle AOB = 360^{\circ}$$

$$\Rightarrow$$
 230° + \angle AOB = 360°

$$\Rightarrow \angle AOB = 360^{\circ} - 230^{\circ}$$

$$\therefore \angle AOB = 130^{\circ}$$

(ii) In
$$\triangle OAB$$
, $OA = OB$

[Radii of the same circle]

$$\therefore \angle OAB = \angle OBA$$

Now,
$$\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$$

[Sum of angles in a triangle]

$$\Rightarrow \angle OAB + \angle OAB + 130^{\circ} = 180^{\circ}$$

 $[\therefore \angle OAB = \angle OBA]$

$$\Rightarrow 2 \angle OAB = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

$$\therefore \angle OAB = \frac{50\Upsilon}{2} = 25^{\circ}$$

(iii) Now, arc AB subtends $\angle AOB$ at the centre and $\angle ACB$ at the remaining part of the circle.

$$\Rightarrow \angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 130^{\circ} = 65^{\circ}$$

meets the circle at R. $\angle POR = 72^{\circ}$

Arc PR subtends $\angle POR$ at the centre and $\angle PQR$ at the remaining part of the circle.

$$\therefore$$
 $\angle POR = 2\angle PQR$

$$\Rightarrow \angle PQR = \frac{1}{2} \angle POR$$

$$\therefore \qquad \angle PQR = \frac{1}{2} \times 72^{\circ} = 36^{\circ}$$

Now in $\triangle QPT$, we have

$$\angle QPT + \angle PTQ + \angle PQT = 180^{\circ}$$
 [Sum of angles of a triangle]

$$\Rightarrow$$
 90° + 36° + $\angle PTQ = 180°$

$$\Rightarrow$$
 126° + \angle PTQ = 180°

$$\Rightarrow$$
 $\angle PTO = 180^{\circ} - 126^{\circ}$

$$\therefore$$
 $\angle PTQ = 54^{\circ}$ or $\angle PTR = 54^{\circ}$

21. O is the centre of the circumcircle of $\triangle ABC$. At A and B, tangents AT and BT are drawn to meet at T.

$$\angle ATB = 80^{\circ} \text{ and } \angle AOC = 130^{\circ}$$

$$TA = TB$$

[Tangents from T]

$$\therefore \angle TAB = \angle TBA$$

Now in ΔTAB , we have

$$\angle TAB + \angle TBA + \angle ATB = 180^{\circ}$$

[Sum of angles of a triangle]

$$\Rightarrow \angle TAB + \angle TAB + 80^{\circ} = 180^{\circ} [\because \angle TAB = \angle TBA]$$

$$\Rightarrow 2\angle TAB = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

$$\therefore \angle TAB = \frac{100\Upsilon}{2} = 50^{\circ}$$

$$\therefore OA = OC$$
 [Radii of the same circle]

$$\angle OAC = \angle OCA$$

Now in $\triangle OAC$, we have

$$\angle OAC + \angle OCA + \angle AOC = 180^{\circ}$$

[Sum of angles of a triangle]

$$\Rightarrow \angle OAC + \angle OAC + 130^{\circ} = 180^{\circ} [:: \angle OAC = \angle OCA]$$

$$\Rightarrow 2\angle OAC = 180^{\circ} - 130^{\circ} = 50^{\circ} \Rightarrow \angle OAC = \frac{50\Upsilon}{2} = 25^{\circ} [\because \angle OAC = \angle OCA]$$

: OA is radius and AT is the tangent.

$$\therefore \angle OAT = 90^{\circ}$$

Now,
$$\angle CAB = \angle CAO + \angle OAT - \angle TAB$$

= $25^{\circ} + 90^{\circ} - 50^{\circ} = 65^{\circ}$

22. From the given figure, PA and PB are tangents to the circle with centre O. $\triangle ABC$ is inscribed in circle such that AB = AC, $\angle BAC = 72^{\circ}$ Now in $\triangle ABC$, we have

$$\Rightarrow$$
 $\angle ABC + \angle ACB = 180^{\circ} - 72^{\circ} = 108^{\circ}$

But $\angle ABC = \angle ACB$

[Angle opposite to equal sides]

$$\therefore$$
 $\angle ACB + \angle ACB = 108^{\circ}$

$$\Rightarrow$$
 2 $\angle ACB = 108^{\circ} \Rightarrow \angle ACB = \frac{108\Upsilon}{2} = 54^{\circ}.$

(i) Arc AB, subtends $\angle AOB$ at the centre and $\angle ACB$ on the remaining part of the circle.

$$\therefore \angle AOB = 2 \angle ACB = 2 \times 54^{\circ} = 108^{\circ}$$

(ii)
$$\angle APB = 180^{\circ} - \angle AOB$$

= $180^{\circ} - 108^{\circ} = 72^{\circ}$

23. Given: AB is the diameter of the circle with centre O. At A and B, tangents EAF and CBD are drawn.

To prove . $CD \parallel EF$

Proof. : OA is radius and EAF is the tangent.

$$\therefore OA \perp EF \text{ or } \angle OAE = 90^{\circ} \qquad \dots (i)$$

Again, OB is radius and CBD is the tangent. Therefore,

$$\angle OBD = 90^{\circ}$$
(ii)

From (i) and (ii), $\angle OAE = \angle OBD$

But these are alternate angles,

∴ CD || EF. Hence Proved

24. AB is the chord of the circle with centre O. BP and AP are the tangents drawn meeting each other at P. OP is joined intersecting AB at C.

To Prove. $\angle PAC = \angle PBC$

Proof: In $\triangle PAC$ and $\triangle PBC$,

$$PA = PB$$
 [Tangents from P]

$$PC = PC$$
 [Common]

$$\angle APC = \angle BPC$$

[OP bisects ∠APB]

$$\therefore \Delta PAC \cong \Delta PBC$$

[S.A.S. axiom]

Hence,
$$\angle PAC = \angle PBC$$

[C.P. C. T.]

25. Given: AB and CD are two tangents such that $AB \parallel CD$. PO and QO are joined.

To Prove. POQ is a straight line.

Construction: Draw $OE \parallel AB \parallel CD$.

Proof. : OP is the radius and AB is the tangent.

Similarly,
$$\angle OQC = 90^{\circ}$$

$$\therefore \angle OPA + \angle POE = 180^{\circ}$$

[Angles on the same side of the transversal]

$$\Rightarrow 90^{\circ} + \angle POE = 180^{\circ}$$

$$\Rightarrow \angle POE = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

Similarly,OE || CD

$$\therefore \angle OOE + \angle OOC = 180^{\circ}$$

$$\Rightarrow \angle QOE + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle QOE = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

$$\therefore \angle POE + \angle QOE = 90^{\circ} + 90^{\circ} = 180^{\circ}$$

Hence, *POQ* is a straight line. **Hence proved.**

26. PQ is a transverse common tangent to the two circles with centre A and B

respectively. The radii of circles are 5 cm and 3 cm . AB is joined which intersects PQ at C and CP = 12 cm. Join AP and BQ.

 \therefore AP is radius and PQ is tangent.

$$\therefore \angle APQ = 90^{\circ}$$

Similarly, $\angle BQC = 90^{\circ}$

Now, in $\triangle PAC$ and $\triangle QBC$, we have

$$\angle APC = \angle BQC$$

[Each 90°]

$$\angle PCA = \angle QCB$$

[Vertically opposite angles]

$$\therefore \Delta PAC \sim \Delta QBC$$

[AA axiom]

$$\therefore \frac{AC}{CB} = \frac{PC}{CO} = \frac{AP}{BO}$$

$$\Rightarrow \frac{PC}{CQ} = \frac{AP}{BQ} \Rightarrow \frac{12}{CQ} = \frac{5}{3}$$

$$\Rightarrow CQ = \frac{12 \times 3}{5} = \frac{36}{5}$$
 cm = 7.2 cm.

Now, in $\triangle APC$ we have

$$AC^2 = PC^2 + AP^2$$

[Pythagoras Theorem]

$$AC^2 = 12^2 + 5^2 = 144 + 25 = 169 = (13)^2$$

$$\therefore AC = 13 \text{ cm}.$$

Similarly, in right $\triangle BCQ$, we have

$$BC^2 = QC^2 + QB^2$$
 [Pythagoras Theorem]
= $(7.2)^2 + (3)^2 = 51.84 + 9 = 60.84 = (7.8)^2$

$$\therefore BC = 7.8 \text{ cm}.$$

Hence,
$$AB = AC + CB = (13 + 7.8) \text{ cm} = 20.8 \text{ cm}.$$

27. Given: $\triangle ABC$ circumscribed about a circle with centre O. AB = AC and the circle touches the sides AB, BC and CA at P, Q and R respectively.

To Prove. Q bisects BC.

Proof. AP and AR are the tangents to the circle.

Similarly, BP = BQ and CQ = CR

$$AB = AC \text{ and } AP = AR$$

$$AB - AP = AC - AR$$

$$\Rightarrow BP = CR$$

But
$$BQ = BP$$
 and $CQ = CR$

$$BQ = CQ$$

Hence Q is the mid - point of BC. Hence proved.

28. From the figure, quadrilateral ABCD is circumscribed about a circle with centre O. AD \perp AB. Radius of circle = 10 cm. AB = x cm.

$$BC = 38 \text{ cm}$$
, $CR = 27 \text{ cm}$.

 \therefore DR and DS are the tangents to the circle from D.

$$\therefore DR = DS = y$$

- $: OS \perp AD \text{ and } OP \perp AB$
- : APOS is a square

$$\therefore$$
 AS = OS = 10 cm

: The circle touches the sides of the quadrilateral. S

$$\therefore$$
 AB + CD = AD + BC

$$\Rightarrow x + 27 + y = y + 10 + 38.$$

$$\Rightarrow x = y + 10 + 38 - 27 - y = 21$$

Hence, x = 21 cm.

R

38 cm

0

- 29. From the figure a circle with centre O is inscribed in a quadrilateral ABCD DC = 25 cm, CB = 38 cm. BQ = 27 cm. AD \perp DC.
 - : BQ and BR are the tangents to the circle from B

$$\therefore BR = BQ = 27 \text{ cm}$$

$$\therefore CR = BC - BR = 38 - 27 = 11 \text{ cm}.$$

Similarly, CS = CR = 11 cm.

$$\therefore DS = DC - CS = 25 - 11 = 14 \text{ cm}.$$

$$:: OP \perp AD \text{ and } OS \perp DC$$

.. DSOP is a square

$$\therefore$$
 DS = PO = radius of the circle

:. Radius of the circle = 14 cm.

SP is the tangent to the circle at S.

Q

P

D

To find: The value of x, y and z

Proof ::SP is tangent to the circle and OS is the radius.

$$\therefore \angle OSP = 90^{\circ} \implies \angle TSP = 90^{\circ}$$

In ATSR,

$$\angle STR + \angle TSR + \angle TRS = 180^{\circ}$$

[Sum of angles of a triangle]

$$\Rightarrow x^{\circ} + 90^{\circ} + 65^{\circ} = 180^{\circ}$$

$$\Rightarrow x^{\circ} + 155^{\circ} = 180^{\circ}$$

$$\Rightarrow x^{\circ} = 180^{\circ} - 155^{\circ} = 25^{\circ}$$

Arc SQ subtends $\angle SOQ$ at the centre of the circle and $\angle STQ$ at the remaining part of the circle.

$$\Rightarrow y = 2x \Rightarrow y = 2 \times 25^{\circ} = 50^{\circ}$$

In $\triangle OSP$, we have:

$$\angle OSP + \angle SOP + \angle SPO = 180^{\circ}$$

[Sum of angles of a triangle]

$$90^{\circ} + 50^{\circ} + z^{\circ} = 180^{\circ}$$

$$z^{\circ} = 180^{\circ} - (90^{\circ} + 50^{\circ})$$

$$\Rightarrow z^{\circ} = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

$$\therefore$$
 $x^{\circ} = 25^{\circ}$, $y^{\circ} = 50^{\circ}$ and $z^{\circ} = 40^{\circ}$

EXERCISE 19B

1. (i) From the figure, chords AB and CD intersect each other at P inside the circle.

$$AP \times PB = CP \times PD$$

$$\Rightarrow$$
 5 × 5.6. = 3.5 × x

$$\Rightarrow x = \frac{5 \times 5.6}{3.5} = 8$$

$$\therefore x = 8 \text{ cm}.$$

(ii) From the figure chords AB and CD intersect each other at P inside the circle.

$$\therefore AP \times PB = CP \times PD$$

$$\Rightarrow x \times 9 = 8.1 \times 5 \Rightarrow x = \frac{8.1 \times 5}{9}$$

$$\therefore x = 4.5 \text{ cm}$$

$$\therefore AP \times PB = CP \times PD$$
$$7 \times (7+9) = 8(8+x)$$

$$\Rightarrow 7 \times 16 = 8(8+x)$$

$$\Rightarrow 8 (8 + x) = 112 \Rightarrow 8 + x = \frac{112}{8} = 14$$

$$x = 14 - 8 = 6 \text{ cm}$$

$$\therefore PT^2 = PA \times PB$$

$$\Rightarrow x^2 = 4.5 (4.5 + 13.5)$$

$$= 4.5 \times 18 = 81$$

$$\Rightarrow x = \sqrt{81} = 9 \text{ cm}$$

(v) From the figure, PAB is the secant and PT is the tangent to the circle.

$$\therefore PT^2 = PA \times PB$$

$$\Rightarrow$$
 $(12)^2 = x \times (x+10)$

$$\Rightarrow$$
 144 = x^2 + 10 x

$$\Rightarrow x^2 + 10x - 144 = 0$$

$$\Rightarrow x^2 + 18x - 8x - 144 = 0$$

$$\Rightarrow x(x+18) - 8(x+18) = 0$$

$$\Rightarrow (x+18)(x-8) = 0$$

[Zero product rules]

Either x + 18 = 0, then x = -18 which is not possible.

or
$$x - 8 = 0$$
, then $x = 8$

Hence,
$$x = 8$$
 cm

We know that,

$$PB = PA - AB = 16 - 12 = 4 \text{ cm}$$

[:
$$PA = 16 \text{ cm}, AB = 12 \text{ cm}$$
]

Now,
$$P T^2 = PA \times PB = 16 \times 4 = 64 \text{ cm}^2$$

$$\therefore PT = \sqrt{64 \text{ cm}^2} = 8 \text{ cm}$$

3.
$$AB = 12 \text{ cm}, AP = 2.4 \text{ cm}$$

$$\therefore PB = AB - AP = 12 - 2.4 = 9.6 \text{ cm}$$

Let
$$CP = x$$

: Chords AB and CD intersect each other at P inside the circle.

$$\Rightarrow$$
 2.4 × 9.6 = x × 7.2

$$\Rightarrow x = \frac{2.4 \times 9.6}{7.2} = 3.2 \text{ cm} \Rightarrow \text{CP} = 3.2 \text{ cm}$$

Hence, CD = CP + PD = 3.2 + 7.2 = 10.4 cm.

∴
$$BP = AP - AB$$

= 12 cm - 4 cm = 8 cm.
 $CD = 10$ cm.

Let PD = x

:.
$$CP = (10 + x)$$
 cm.

 \therefore Two Chords AB and CD intersect each other at P outside the circle.

$$\therefore PA \times PB = PC \times PD$$

$$\Rightarrow$$
 12 × 8 = (10 + x) × x \Rightarrow 96 = 10x + x²

$$\Rightarrow x^2 + 10x - 96 = 0 \Rightarrow x^2 + 16x - 6x - 96 = 0$$

$$\Rightarrow x(x+16)-6(x+16)=0$$

$$\Rightarrow (x + 16) (x - 6) = 0$$

[Zero product rule]

Either x + 16 = 0, then x = -16 which is not possible

or
$$x - 6 = 0$$
, then $x = 6$

Hence, PD = 6 cm.

5.

Given: Two circles with centre O and C intersect each other at A and B. P is a point on BA produced and from P, PQ and PR are tangents to these circles.

To Prove: PQ = PR

Proof: PQ is the tangent and PAB is the secant of the circle with centre O.

$$\therefore PA \times PB = PQ^2 \qquad \dots (i)$$

Similarly, PR is the tangent and PAB is the secant of the circle with centre C.

$$\therefore PA \times PB = PR^2 \qquad \dots (ii)$$

From (i) and (ii), we have

$$PQ^2 = PR^2 \implies PQ = PR$$
. Hence proved.

6.

Given: AB is the direct common tangent to the circles which intersect each other at C and D. DC is produced to meet AB at P.

To prove: P is mid-point of AB.

Proof: : PA is tangent and PCD is the secant to the first circle

Again PB is the tangent and PCD is the secant of the second circle.

From (i) and (ii), we have

$$PA^2 = PB^2 \Rightarrow PA = PB$$

Hence, P is the mid-point of AB.

- 7. From the figure, PAT is tangent to the circle at A. $\triangle ABC$ is inscribed in the circle and $\angle ACB = 50^{\circ}$
 - (i) : PAT is the tangent and AB is the chord of the circle.

[Angles in the alternate segment]

50°

$$\therefore \angle TAB = 50^{\circ}$$

(ii) ADBC is a cyclic quadrilateral

$$\therefore$$
 $\angle ADB + \angle ACB = 180^{\circ}$

$$\Rightarrow \angle ADB + 50^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ADB = 180^{\circ} - 50^{\circ} = 130^{\circ}$$
.

8. \therefore *PTA* is the tangent and *BA* is the chord of the circle.

$$\therefore \angle ACB = \angle BAT = 70^{\circ}$$

[Angles in the alternate segment]

Now in $\triangle ABC$, we have

$$\angle ABC + \angle BCA + \angle BAC = 180^{\circ}$$

[Sum of angles in a triangle]

$$\Rightarrow \angle ABC + 70^{\circ} + 45^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ABC + 115^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ABC = 180^{\circ} - 115^{\circ} = 65^{\circ}$$

9. (i) : PAT is the tangent and AC is the chord of the circle.

$$\therefore$$
 $\angle TAC = \angle ABC = 35^{\circ}$

[Angles in the alternate segment]

$$[::\angle ABC = 35^{\circ}]$$

(ii)
$$\angle BAC = 90^{\circ}$$

$$\angle PAB + \angle BAC + \angle TAC = 180^{\circ}$$

$$\Rightarrow \angle PAB + 90^{\circ} + 35^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle PAB + 125^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle PAB = 180^{\circ} - 125^{\circ} = 55^{\circ}$$

10. (i) PAT is the tangent and AD is the chord of the circle.

$$\therefore$$
 $\angle TAD = \angle ABD = 28^{\circ}$ [Angles in the alternate segment]

(ii) : BD is the diameter of the circle

$$\therefore \angle BAD = 90^{\circ}$$
 [Angles in a semi-circle]

(iii)
$$\angle PAB = \angle ADB$$
 [Angles in the alternate segment]

But,
$$\angle ADB = 180^{\circ} - (\angle ABD + \angle BAD)$$
 [Angles of a triangle]
= $180^{\circ} - (28^{\circ} + 90^{\circ})$
= $180^{\circ} - 118^{\circ} = 62^{\circ}$

$$\therefore$$
 $\angle ADB = 62^{\circ} \Rightarrow \angle PAB = 62^{\circ}$

(iv) In $\triangle BCD$, we have

$$\angle CBD + \angle BCD + \angle BDC = 180^{\circ}$$
 [Angle sum of a triangle]

$$\Rightarrow \angle CBD + 90^{\circ} + 52^{\circ} = 180^{\circ} [::BCD = 90^{\circ} \text{Angle in a}]$$
 semi-circle]

$$\Rightarrow$$
 $\angle CBD + 142^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle CBD = 180^{\circ} - 142^{\circ} = 38^{\circ}$

Hence, $\angle CBD = 38^{\circ}$

11. Given: PQ and PR are two equal chords of the circle. QR is joined and SPT is the tangent.

To Prove. QR | SPT

Proof : PQ = PR [Given]

$$\therefore$$
 $\angle PRQ = \angle PQR$

[Equal arcs subtend equal angles at

the circumference]

But,
$$\angle RPT = \angle PQR$$

[Angles in the alternate segment]

$$\therefore$$
 $\angle PRQ = \angle RPT$

But these are alternate angles.

12. AB is the chord of the circle with centre O and BT is the tangent.

$$\angle OAB = 35^{\circ}$$
.

$$\therefore \angle ABT = \angle APB$$

[Angles in the alternate segment]

$$\Rightarrow x^{\circ} = y^{\circ}$$

In $\triangle OAB$, OA = OB [Radii of the same cir-B cle]

$$\therefore \angle OAB = \angle OBA = 35^{\circ}$$

But
$$\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$$

$$\Rightarrow$$
 35° + 35° + $\angle AOB$ = 180°

$$\Rightarrow 70^{\circ} + \angle AOB = 180^{\circ}$$

Т

$$\therefore \angle AOB = 2\angle APB$$

$$\Rightarrow 110^{\circ} = 2y^{\circ} \Rightarrow y^{\circ} = \frac{110\Upsilon}{2} = 55^{\circ}$$

Hence, $x^{\circ} = y^{\circ} = 55^{\circ}$

13. Given: PAB is the secant to a circle and PT is the tangent. AT is joined.

To Prove:

(i)
$$\Delta PAT \sim \Delta PTB$$

(ii)
$$PA \times PB = PT^2$$

Proof. (i) $\triangle PAT$ and $\triangle PTB$

$$\angle P = \angle P$$
 [Common]

$$\angle PTA = \angle ABT \text{ or } \angle PBT$$

[Angle in the alternate segment]

[AA similarity axiom]

[Proved in (i)]

 $\therefore \Delta PAT \sim \Delta PTB$

(ii) :
$$\triangle PAT \sim \triangle PTB$$

$$\therefore \frac{}{PB} = \frac{}{PT}$$

$$\Rightarrow$$
 PT × PT = PA × PB

$$\Rightarrow$$
 PT² = PA × PB

14. Given $\triangle ABC$ is a right- angled at D. BD is a perpendicular on AC.

To Prove:

(i)
$$AC \times AD = AB^2$$

(ii)
$$AC \times CD = BC^2$$

Construction: Draw a circumcircle of $\triangle BCD$.

Proof. (i) : AB is the tangent and ADC is a secant of the circle.

$$AB^2 = AC \times AD$$

(ii)
$$AC \times CD = AC \times (AC - AD)$$

= $AC^2 - AC \times AD = AC^2 - AB^2$

But in right $\triangle ABC$,

$$AC^2 = AB^2 + BC^2 \implies AC^2 - AB^2 = BC^2$$

$$\therefore$$
 AC × CD = BC² Hence proved.

15.

Join BD, OB and OC.

 \therefore BCE is a straight line.

$$\therefore$$
 $\angle BCD + \angle DCE = 180^{\circ}$

[Linear Pair]

D

0

В

C

$$\Rightarrow$$
 $\angle BCD + 110^{\circ} = 180^{\circ}$

$$\Rightarrow \angle BCD = 180^{\circ} - 110^{\circ}$$

$$\Rightarrow \angle BCD = 70^{\circ}$$

Now in the $\triangle BCD$,

$$BC = CD$$

[Given]

$$\therefore \angle BDC = \angle DBC$$

[Angles opposite to equal sides]

$$\therefore \angle BDC = \angle DBC = \frac{110^{\circ}}{2} = 55^{\circ}$$

$$\angle BCT = \angle DBC$$

[Angle in the alternate segment]

$$\Rightarrow \angle BCT = 55^{\circ}$$

[$: \angle BDC = 55^{\circ}$]

$$\therefore \angle DCT = \angle DCB + \angle BCT$$

$$= \angle BCD + 55^{\circ}$$

$$= 70^{\circ} + 55^{\circ}$$

$$= 125^{\circ}$$

Hence, $\angle DCT = 125^{\circ}$

(ii) Arc BC subtends $\angle BOC$ at the centre and $\angle BDC$ at the remaining part of the circle.

$$\therefore \angle BOC = 2 \angle BDC = 2 \times 55^{\circ} = 110^{\circ}$$