ANGLE AND CYCLIC PROPERTIES OF A CIRCLE

EXERCISE 18

1. From the figure join OB.

In $\triangle AOB$, we have

$$OA = OB$$

$$\therefore \Rightarrow \angle OBA = 30^{\circ}$$

Similarly, in $\triangle OBC$, we have OB = OC

$$\therefore \Rightarrow \angle OBC = \angle OCB = 40^{\circ}$$

Adding we get:

$$\angle$$
 OBA + \angle OBC = 30° + 40° = 70°

Now, arc AC subtends \angle AOC at the centre of the circle and \angle ABC at the remaining part of the circle.

$$\therefore$$
 \angle AOC = 2 \angle ABC = 2 \times 70° = 140°.

2. From the figure, \angle AOC = 130°

∴ Reflex
$$\angle$$
 AOC = 360° – 130° = 230°

Now major arc AC subtends \angle AOC at the centre and \angle ABC at the remaining part of the circle.

$$\therefore$$
 \angle AOC = 2 \angle ABC

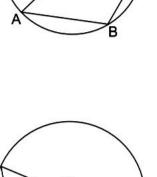
$$\Rightarrow$$
 $\angle ABC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 230^{\circ} = 115^{\circ}.$

- 3. From the figure, $\angle AOB = 110^{\circ}$
 - (i) Now, arc AB subtends ∠AOB at the centre and ∠ACB at the remaining part of the circle.

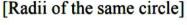
$$\therefore$$
 \angle AOB = 2 \angle ACB

$$\Rightarrow$$
 $\angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 110^{\circ} = 55^{\circ}$

$$\Rightarrow$$
 $\angle ACO = 55^{\circ}$.

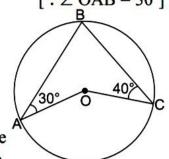


2) 130°



[Opposite angles to equal sides]

$$[\because \angle OAB = 30^{\circ}]$$



(ii) Now in $\triangle OAC$, we have

$$OA = OC$$

[Radii of the same circle]

 \angle CAO = \angle ACO = 55° [Angles opposite to equal sides are equal]

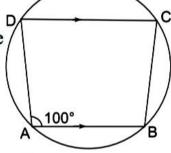
4. From the figure, ABCD is a cyclic quadrilateral.

AB || CD and
$$\angle$$
 BAD = 100°

(i) \angle BAD + \angle BCD = 180° [Sum of the opposite angles of a cyclic quadrilateral]

$$\Rightarrow \angle BCD = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

$$\therefore \angle BAD + \angle ADC = 180^{\circ}$$



[Sum of angles on the same side of a transversal]

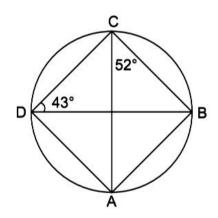
$$\Rightarrow$$
 100° + \angle ADC=180° \Rightarrow \angle ADC = 180° - 100° = 80°

(iii)
$$\angle$$
 ABC + \angle ADC = 180°

[Sum of opposite angles of a cyclic quadrilateral]

$$\Rightarrow$$
 \angle ABC + 80° = 180° \Rightarrow \angle ABC = 180° - 80° = 100°.

5. From the figure,



(i) $\angle ADB = \angle ACB = 52^{\circ}$

[Angles in the same segment]

$$[\because \angle ACB = 52^{\circ}]$$

(ii) $\angle BAC = \angle BDC = 43^{\circ}$

[Angles in the same segment]

[∴
$$\angle$$
BDC = 43°]

(iii) In \triangle ABC, we have

$$\angle ABC + \angle BCA + \angle BAC = 180^{\circ}$$
 [Sum of angles of a triangle]

$$\Rightarrow$$
 \angle ABC + 52° + 43° = 180° \Rightarrow \angle ABC + 95° = 180°

$$\Rightarrow \angle ABC = 180^{\circ} - 95^{\circ} = 85^{\circ}$$

Hence,
$$\angle ABC = 85^{\circ}$$
.

6. O is the centre of the circle

$$\angle AOB = 140^{\circ}, \angle OAC = 50^{\circ}$$

Join OC and AB.

In $\triangle OAC$, we have:

$$\therefore \angle OCA = \angle OAC = 50^{\circ} \quad [\because \angle OAC = 50^{\circ}]$$

But in $\triangle AOC$, we have

$$\angle AOC + \angle OAC + \angle ACO = 180^{\circ}$$
 [Angle sum of a triangle]

$$\Rightarrow$$
 $\angle AOC + 50^{\circ} + 50^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle AOC + 100^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle AOC = 180^{\circ} - 100^{\circ} = 80^{\circ}$

$$\angle BOC = 140^{\circ} - 80^{\circ} = 60^{\circ}$$

(i) Now arc AC subtends ∠AOC at the centre and ∠ABC at the remaining part of the circle

$$\therefore$$
 $\angle AOC = 2 \angle ABC = 180^{\circ}$

$$\Rightarrow \angle ABC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$$

(ii) In
$$\triangle$$
OBC, we have OB = OC

[Radii of the same circle]

$$\angle$$
OBC = \angle BCO [Angles opposite to equal sides are equal]

But,
$$\angle BOC + \angle OBC + \angle BCO = 180^{\circ}$$

$$60^{\circ} + \angle OBC + \angle BCO = 180^{\circ}$$

$$\Rightarrow 2\angle BCO + 180^{\circ} - 60^{\circ} = 120^{\circ}$$

$$\Rightarrow$$
 $\angle BOC = \frac{120"}{2} = 60^{\circ} \Rightarrow \angle BCO = 60^{\circ}$.

(iii) In $\triangle OAB$, we have

$$OB = OA$$

[Radii of the same circle]

[Angles opposite to equal sides]

But,
$$\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$$

$$\Rightarrow$$
 140° + \angle OAB + \angle OBA = 180°

$$\Rightarrow$$
 140° + 2 \angle OBA = 180°

$$\Rightarrow 2\angle OBA = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

$$\therefore \angle OBA = \frac{40\Upsilon}{2} = 20^{\circ} \implies \angle OAB = 20^{\circ}$$

(iv)
$$\angle BCA = \angle OCB + \angle ACO = 60^{\circ} + 50^{\circ} = 110^{\circ}$$

7. From the figure, ABCD is a cyclic quadrilateral,

$$\angle BAD = 70^{\circ}$$
, $\angle ABD = 50^{\circ}$ and $\angle ADC = 80^{\circ}$. Join AC.

(i)
$$\angle BDC = \angle ADC - \angle ADB = 80^{\circ} - \{180^{\circ} - (\angle DAB + \angle ABD)\}$$

$$\Rightarrow \angle BDC = 80^{\circ} - \{180^{\circ} - (70^{\circ} + 50^{\circ})\}$$
$$= 80^{\circ} - 180^{\circ} + 70^{\circ} + 50^{\circ}$$

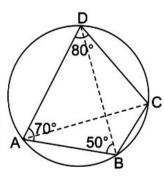
$$\Rightarrow$$
 $\angle BDC = 200^{\circ} - 180^{\circ} = 20^{\circ}$.

(ii)
$$\angle BCD = 180^{\circ} - \angle BAD = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

[Since, ABCD is cyclic]

(iii)
$$\angle BCA = \angle ADB \Rightarrow \angle ADB = \angle ADC - \angle BDC$$

= $80^{\circ} - 20^{\circ} = 60^{\circ}$



8. ABCD is a cyclic quadrilateral and AOB is the diameter of the circle.

Given that,
$$\angle ADC = 140^{\circ}$$

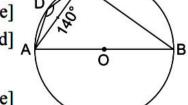
$$\Rightarrow$$
 $\angle ABC + 140^{\circ} = 180^{\circ}$ \Rightarrow $\angle ABC = 180^{\circ} - 140^{\circ} = 40^{\circ}$

Now in $\triangle ABC$, we have

$$\angle ACB = 90^{\circ}$$
 [Angle in a semi –circle]

$$\angle ABC = 40^{\circ}$$

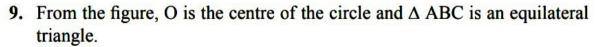
[Proved] A



But $\angle BAC + \angle ACB + \angle ABC = 180^{\circ}$

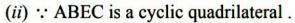
$$\Rightarrow \angle BAC + 90^{\circ} + 40^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BAC + 130^{\circ} = 180^{\circ} \Rightarrow \angle BAC = 180^{\circ} - 130^{\circ} = 50^{\circ}$$



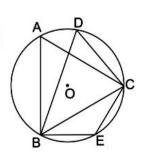
(i)
$$\angle BAC = \angle ABC = \angle ACB = 60^{\circ}$$
.

$$\angle BAC = \angle BDC$$
 [Angle in the same segment]



$$\therefore$$
 $\angle A + \angle BEC = 180^{\circ} \Rightarrow 60^{\circ} + \angle BEC = 180^{\circ}$

$$\Rightarrow \angle BEC = 180^{\circ} - 60^{\circ} = 120^{\circ}$$



10. Given O is the centre of the circle $\angle AOC = 160^{\circ}$, $\angle ABC = x$ and $\angle ADC = y$

To Prove.
$$3 \angle y - 2 \angle x = 140^{\circ}$$

Proof:
$$\therefore$$
 \angle AOC + reflex \angle AOC = 360°

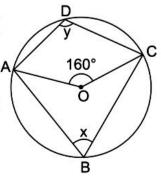
[Angles at a point]

$$\Rightarrow$$
 160° + Reflex $\angle AOC = 360°$

$$\Rightarrow$$
 Reflex $\angle AOC = 360^{\circ} - 160^{\circ} = 200^{\circ}$

Now arc ADC subtends ∠AOC at the centre and ∠ABC at the remaining part of the circle.

$$\therefore$$
 $\angle AOC = 2x \Rightarrow 2x = 160^{\circ}$



$$\Rightarrow \qquad x = \frac{160"}{2} = 80^{\circ}$$

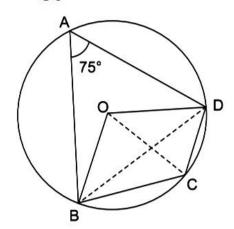
Similarly, reflex $\angle AOC = 2y$

$$\Rightarrow \qquad 2y = 200^{\circ} \Rightarrow y = \frac{200^{\circ}}{2} = 100^{\circ}$$

Now, L.H.S =
$$3\angle y - 2\angle x = 3 \times 100^{\circ} - 2 \times 80^{\circ}$$

= $300^{\circ} - 160^{\circ} = 140^{\circ} = \text{R.H.S}$,

11. (i) From figure, O is the centre of the circle, ∠BAD = 75°, chord BC = chord CD. Join BD, OC. arc BCD subtends ∠BOD at the centre and ∠BAD at the remaining part.



$$\Rightarrow$$
 $\angle BOD = 2\angle BAD = 2 \times 75^{\circ} = 150^{\circ}$...(i)

But $BC = CD \cdot So, \angle BOC = \angle COD$.

[Equal chords subtend equal angles at the centre]

So,
$$\angle BOD = \angle BOC + \angle COD = \angle BOC + \angle BOC$$

= $2 \angle BOC = 150^{\circ}$

$$\Rightarrow \angle BOC = \frac{150}{2} = 75^{\circ}$$

(ii)
$$\angle OBD = \frac{1}{2} [180^{\circ} - \angle BOD] = \frac{1}{2} [180^{\circ} - 150^{\circ}] = \frac{1}{2} [30^{\circ}] = 15^{\circ}$$

(iii)
$$\angle BCD + \angle BAD = 180^{\circ} \implies \angle BCD + 75^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle BCD = 180^{\circ} - 75^{\circ} = 105^{\circ}$.

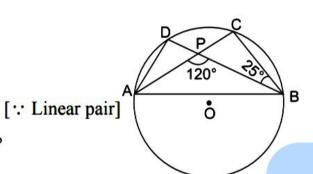
12. Given: O is the centre of the circle.

$$\angle$$
CBD = 25°, \angle APB = 120°

To find: ∠ADB

Proof: In $\triangle ABC$, we have

$$\angle BPC = 180^{\circ} - \angle APB$$
 [
= $180^{\circ} - 120^{\circ} = 60^{\circ}$



In ΔPCB, we have

$$\angle$$
 BPC + \angle CBP + \angle PCB = 180° [Angle sum of a triangle]

$$\Rightarrow 60^{\circ} + 25^{\circ} + \angle PCB = 180^{\circ}$$
$$\angle PCB = 180^{\circ} - 60^{\circ} - 25^{\circ}$$

$$\angle PCB = 180^{\circ} - 60^{\circ} - 25^{\circ}$$

= $180^{\circ} - 85^{\circ} = 95^{\circ}$

$$\angle ADB = \angle PCB = 95^{\circ}$$

[Angles in the same segment]

13. From the figure AOB is the diameter of the circle with centre O, \angle AOC = 100°.

But,
$$\angle AOC + \angle BOC = 180^{\circ}$$

[A linear pair]

100°

C

$$\Rightarrow$$
 100° + \angle BOC = 180°

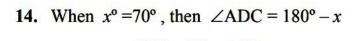
$$\Rightarrow$$
 $\angle BOC=180^{\circ}-100^{\circ}=80^{\circ}$

Now arc BC subtends ∠BOC at the centre and ∠BDC at the remaining part of the circle.

$$\Rightarrow \angle BDC = \frac{1}{2} \angle BOC$$

$$\Rightarrow$$
 $\angle BDC = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$

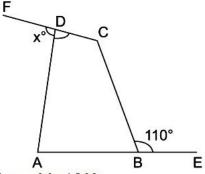
Hence,∠BDC = 40°.



$$=180^{\circ} - 70^{\circ} = 110^{\circ}$$

$$\therefore$$
 $\angle ABC=180^{\circ}-110^{\circ}=70^{\circ}$

$$\triangle ABC + \angle ADC = 70^{\circ} + 110^{\circ} = 180^{\circ}$$



So, the sum of the opposite angles of a quadrilateral is 180°.

: ABCD is a cyclic quadrilateral.

Hence, A,B,C, and D are concyclic.

(ii) When
$$x^{\circ} = 80^{\circ}$$
 then $\angle ADC = 180^{\circ} - x$
= $180^{\circ} - 80^{\circ} = 100^{\circ}$

And
$$\angle ABC = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

$$\therefore \angle ADC + \angle ABC = 100^{\circ} + 70^{\circ} = 170^{\circ}$$

: Sum of the opposite angles of a quadrilateral is not equal to 180°.

: ABCD is not a cyclic quadrilateral.

Hence, A,B,C, and D are not concyclic.

- **15.** (i) ABCD is a cyclic quadrilateral.
 - $\therefore \angle BAD + \angle BCD = 180^{\circ}$

[Opposite angles of a cyclic quadrilateral are

supplementary]

$$\Rightarrow \angle 65^{\circ} + \angle BCD = 180^{\circ}$$

$$\Rightarrow \angle BCD = 180^{\circ} - 65^{\circ} = 115^{\circ}$$

(ii) In
$$\triangle ABD$$
, $\angle BAD + \angle ABD + \angle ADB = 180^{\circ}$

$$\Rightarrow$$
 65° + 70° + \angle ADB = 180° \Rightarrow \angle ADB = 45°

 $\angle ADC = \angle ADB + \angle BDC = 45^{\circ} + 45^{\circ} = 90^{\circ}$, hence AC is a diameter.

16. From the figure,

$$\angle$$
 CAD = 25°, \angle ABD = 50° and \angle ADB = 35°

 \angle CBD and \angle CAD are in the same segment of a circle.

$$\therefore$$
 \angle CBD = \angle CAD = 25° [\because \angle CAD = 25°]

$$[\because \angle CAD = 25^{\circ}]$$

(ii) In $\triangle ABD$, we have

$$\angle ADB + \angle ABD + \angle DAB = 180^{\circ}$$

[Sum of angles of a triangle]

$$\Rightarrow$$
 35° + 50° + \angle DAB = 180°

$$\Rightarrow$$
 85° + \angle DAB = 180°

$$\Rightarrow$$
 $\angle DAB = 180^{\circ} - 85^{\circ} = 95^{\circ}$

$$\Rightarrow$$
 $\angle CAB + \angle DAC = 95^{\circ}$

$$\Rightarrow$$
 $\angle CAB + 25^{\circ} = 95^{\circ}$

$$\therefore$$
 \angle CAB = 95°-25° = 70°

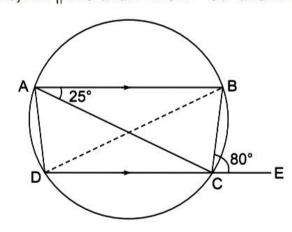
(iii) $\angle ADB$ and $\angle ACB$ are in the same segment.

$$\therefore \angle ACB = \angle ADB = 35^{\circ}$$

$$[\because \angle ADB = 35^{\circ}]$$

50

17. From the figure, AB || DC and \angle BCE = 80° and \angle BAC = 25°. Join BD.



ABCD is a cyclic quadrilateral.

(i)
$$\angle BAD = \angle BCE = 80^{\circ}$$

Ext. angle of a cyclic quadrilateral is equal to its interior opposite angle]

35

$$\Rightarrow \angle BAC + \angle CAD = 80^{\circ}$$

$$\Rightarrow$$
 25° + \angle CAD = 80°

$$\Rightarrow$$
 \angle CAD = $80^{\circ} - 25^{\circ} \Rightarrow \angle$ CAD = 55°

(ii)
$$\angle CBD = \angle CAD = 55^{\circ}$$

[Angles in the same segment given]

Ē

(iii) : AB || DC and AD is its transversal

[Given]

[Co-interior angles]

40°

$$\Rightarrow$$
 80° + \angle ADC =180°

$$\Rightarrow \angle ADC = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

18. Given:

ABCD is a cyclic quadrilateral side CD is produced to E

$$BA = BC$$
 and $\angle BAC = 40^{\circ}$

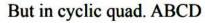
To find: ∠ADE

Proof: In $\triangle ABC$, AB = BC

 \therefore \angle BAC = \angle BCA [Angles opposite to equal sides]

And
$$\angle ABC = 180^{\circ} - (40^{\circ} + 40^{\circ})$$

= $180^{\circ} - 80^{\circ} = 100^{\circ}$



Ext.
$$\angle ADE = \angle ABC$$

[Interior opposite angle]

$$\therefore$$
 $\angle ADE = 100^{\circ}$.

19. From the figure,

AOB is the diameter of the circle with centre O. Chord ED \parallel AB and \angle EAB = 65°. Join EB.

$$\angle AEB + \angle EAB + \angle EBA = 180^{\circ}$$

$$\Rightarrow$$
 90° + 65° + \angle EBA = 180°

$$\Rightarrow$$
 155° + \angle EBA = 180°

$$\Rightarrow$$
 \angle EBA = 180° - 155°= 25°

$$\therefore$$
 \angle EBA = 25°

$$\therefore$$
 ZEAB + ZAED = 180° [Angles on the same side of the transversal]

$$\Rightarrow$$
 65° + \angle AED =180°

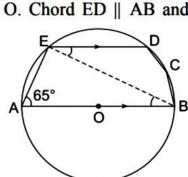
$$\Rightarrow$$
 \angle AED =180° - 65° = 115°

$$\therefore$$
 \angle BED = \angle AED - \angle AEB = 115° - 90° = 25°.

(iii) : EBCD is a cyclic quadrilateral.

$$\therefore \angle BCD + \angle BED = 180^{\circ} \Rightarrow \angle BCD + 25^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BCD = 180^{\circ} - 25^{\circ}$$



20. From the figure, we have

O is the centre of the circle. ABCD is cyclic quadrilateral. ABE is a

straight line and \angle CBE = 55°

$$\angle$$
 ABC + \angle CBE = 180°

[Linear pair]

- $\Rightarrow \angle ABC + 55^{\circ} = 180^{\circ}$
- $\Rightarrow \angle ABC = 180^{\circ} 55^{\circ}$
- $\Rightarrow \angle ABC = 125^{\circ}$

Now major arc ADC subtends reflex ∠AOC at the centre and ∠ABC at the remaining part of the circle



In cyclic quadrilateral ABCD, we have

$$\angle$$
 ADC + \angle ABC = 180°

$$\Rightarrow \angle ADC + 125^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ADC = 180^{\circ} - 125^{\circ}$$

$$\therefore$$
 $\angle ADC = 55^{\circ}$

Hence, (i) $\angle ADC = 55^{\circ}$ (ii) $\angle ABC = 125^{\circ}$ (iii) $x = 250^{\circ}$.

21. Given:

AB and CD, are two parallel chords. BDE and ACE are two straight lines intersecting each other at E outside the circle.

To prove: $\triangle AEB$, is an isosceles triangle.

Proof. ABCD is a cyclic quadrilateral

$$\therefore$$
 Ext. \angle EDC = \angle A and

Ext.
$$\angle$$
 DCE = \angle B

But AB || CD

$$\Rightarrow \angle EDC = \angle B$$

[Corresponding angles]

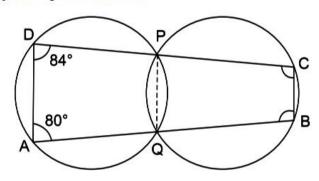
and
$$\angle$$
 DCE = \angle A \Rightarrow \angle B = \angle A

$$\therefore$$
 EA = EB

Hence, $\triangle AEB$ is an isosceles triangle.

22. From the figure, two circles intersect each other at P and Q ABCD is a quadrilateral in which $\angle A = 80^{\circ}$ and $\angle D = 84^{\circ}$. Join PQ.

AOPD is a cyclic quadrilateral.



$$\therefore$$
 $\angle ADP + \angle AQP = 180^{\circ}$

$$\Rightarrow$$
 84° + \angle AQP = 180°

$$\Rightarrow \angle AQP = 180^{\circ} - 84^{\circ} = 96^{\circ}$$

Similarly, $\angle QAD + \angle QPD = 180^{\circ}$

$$\Rightarrow$$
 80° + \angle QPD = 180°

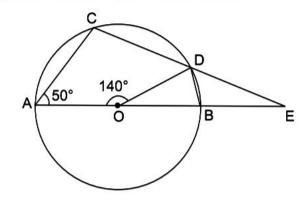
$$\Rightarrow \angle QPD = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

Now, in cyclic quadrilateral QBCP,

Ext,
$$\angle QPD = \angle QBC$$

$$\therefore$$
 (i) \angle QBC = \angle QPD = 100° (ii) \angle BCP = \angle AQP = 96°.

23. From the figure, O is the centre of the circle.



$$\angle$$
 AOD = 140° and \angle CAB = 50°

$$\angle$$
 AOD + \angle DOB = 180°

[Linear pair]

$$\Rightarrow$$
 140° + \angle DOB = 180°

$$\Rightarrow \angle DOB = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

But, OB = OD [Radii of the same circle]

$$\therefore$$
 \angle OBD = \angle ODB [Angles opposite to equal sides]

But in $\triangle OBD$, we have

$$\angle$$
OBD + \angle ODB + \angle BOD = 180°

$$\Rightarrow \angle OBD + \angle OBD + 40^{\circ} = 180^{\circ}$$

 $[\therefore \angle OBD = \angle ODB]$

$$\Rightarrow$$
 2 \angle OBD = 180° - 40° = 140°

$$\therefore \angle OBD = \frac{140"}{2} = 70^{\circ}$$

(i) In cyclic quadrilateral ABCD,

Ext.
$$\angle$$
 EDB = \angle CAB = 50°

 $[:: \angle CAB = 50^{\circ}]$

$$(ii)$$
 \angle EBD + \angle OBD = 180°

[Linear pair]

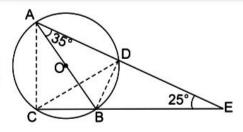
$$\Rightarrow \angle EBD + 70^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle EBD = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

Join BD, CA and CD.

In ΔABD, we have

- \therefore $\angle ADB = 90^{\circ} [Angle in semi-circle]$
- \therefore $\angle BDE = 180^{\circ} 90^{\circ} = 90^{\circ}$



In $\triangle BED$, we have $\angle DBE = 180^{\circ} - (90^{\circ} + 25^{\circ}) = 180^{\circ} - 115^{\circ} = 65^{\circ}$

But
$$\angle CBD + \angle DBE = 180^{\circ} \implies \angle CBD + 65^{\circ} = 180^{\circ}$$

- $\Rightarrow \angle CBD = 180^{\circ} 65^{\circ} = 115^{\circ}$
- \therefore \angle BCD = \angle BAD[Angles in the same segment]
- $\therefore \angle BCD = 35^{\circ} \qquad (\because \angle BAD = 35^{\circ})$

Now, In \triangle CBD, we have \angle DCB + \angle DBC + \angle BDC = 180°

$$\Rightarrow$$
 35° + 115° + \angle BDC = 180°

$$\Rightarrow 150^{\circ} + \angle BDC = 180^{\circ}$$

$$\Rightarrow \angle BDC = 180^{\circ} - 150^{\circ}$$

 $\Rightarrow \angle BDC = 30^{\circ}$.

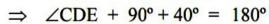
Hence (i) $\angle DCB = 35^{\circ}$

- (ii) $\angle DBC = 115^{\circ}$ and
- (iii) $\angle BDC = 30^{\circ}$
- 25. From the figure, lines AB and CD pass through the centre O of the circle. $\angle AOD = 75^{\circ}$ and $\angle OCE = 40^{\circ}$
 - (i) $\angle CED = 90^{\circ}$ [Angle in a semi-circle]

Now, in $\triangle CDE$, we have

$$\angle$$
 CDE + \angle CED + \angle ECD = 180°

[Angle sum of a triangle]



$$\Rightarrow$$
 \angle CDE + 130° = 180°

$$\Rightarrow$$
 \angle CDE = $180^{\circ} - 130^{\circ}$

$$\Rightarrow$$
 \angle CDE = 50°

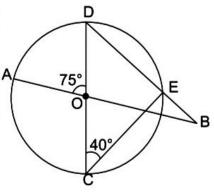
(ii) Now, in $\triangle OBD$, we have

Ext. $\angle DOA = \angle CDE + \angle OBD$

$$\Rightarrow$$
 75° = 50° + \angle OBD

$$\Rightarrow \angle OBD = 75^{\circ} - 50^{\circ} = 25^{\circ}$$
.

$$\Rightarrow \angle OBE = 25^{\circ}$$
.



26. From the figure,

$$AB = AC = CD, \angle ADC = 35^{\circ}$$

$$AC = DC$$

$$\therefore$$
 \angle CAD = \angle ADC = 35°

Now, in $\triangle CDA$, we have

(i) Ext.
$$\angle ACB = \angle CAD + \angle ADC$$

= 35° + 35° = 70°

$$AB = AC$$

(ii) Now, in $\triangle ABC$, we have

$$\angle$$
 ABC + \angle ACB + \angle BAC = 180°

[Sum of angles of a triangle]

35° > D

$$\Rightarrow$$
 70° + 70° + \angle BAC=180°

$$\Rightarrow$$
 140° + \angle BAC = 180°

But
$$\angle BAC = \angle BEC$$

[Angles in the same segment]

$$\therefore$$
 $\angle BEC = 40^{\circ}$.

27. Given: The sides AB and AC of a △ABC, are produced to X and Y respectively. BP and CP are the bisectors of Ext ∠B and Ext ∠C meeting each other at P.

To Prove: (i)
$$\angle BPC = 90^{\circ} - \frac{\angle A}{2}$$

(ii) Is ABPC a cyclic quadrilateral?

Proof.: In AABC

Ext.
$$\angle B = Interior \angle C + \angle A$$

Ext.
$$\angle C$$
 = Interior $\angle B + \angle A$

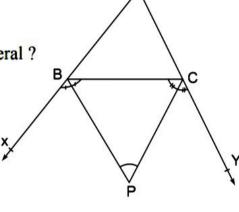
or
$$\angle CBP = \frac{1}{2} (\angle C + \angle A)$$

= $\frac{1}{2} \angle C + \frac{1}{2} \angle A$

and
$$\angle BCP = \frac{1}{2} (\angle B + \angle A) = \frac{1}{2} \angle B + \frac{1}{2} \angle A$$

On adding, We get:

$$\angle CBP + \angle BCP = \frac{1}{2} \angle C + \frac{1}{2} \angle A + \frac{1}{2} \angle B + \frac{1}{2} A$$
$$= \frac{1}{2} (\angle A + \angle B + \angle C) + \frac{1}{2} \angle A$$



$$=\frac{1}{2} \times 180^{\circ} + \frac{1}{2} \angle A = 90^{\circ} + \frac{1}{2} \angle A$$

But in $\triangle BPC$, we have

$$\angle BPC = 180^{\circ} - (CBP + \angle BCP)$$

= $180^{\circ} - \left[90^{\circ} + \frac{1}{2} \angle A\right]$
= $180^{\circ} - 90^{\circ} - \frac{1}{2} \angle A = 90^{\circ} - \frac{1}{2} \angle A$

(ii) In quadrilateral ABPC, we have

$$\angle A + \angle BPC = \angle A + 90^{\circ} - \frac{1}{2} \angle A$$
$$= 90^{\circ} + \frac{1}{2} \angle A$$

But it is not equal to 180°

: ABPC is not a cyclic quadrilateral.

- 28. I is the incentre of the $\triangle ABC$, AI is joined and produced to meet the circle at D. DB, DC, IC, and IB are joined. $\angle ABC = 55^{\circ}$ and $\angle ACB = 65^{\circ}$
 - (i) :: AD is the diameter

$$\Rightarrow \angle ACB + \angle BCD = 90^{\circ}$$

$$\Rightarrow$$
 65° + \angle BCD = 90°

$$\Rightarrow \angle BCD = 90^{\circ} - 65^{\circ} = 25^{\circ}$$

(ii) Similarly, $\angle ABD = 90^{\circ}$

$$\Rightarrow \angle ABC + \angle CBD = 90^{\circ}$$

$$\Rightarrow 55^{\circ} + \angle CBD = 90^{\circ}$$

$$\Rightarrow \angle CBD = 90^{\circ} - 55^{\circ} = 35^{\circ}$$

(iii) In \triangle ABC, we have

$$\angle BAC + \angle ABC + \angle ACB = 180^{\circ}$$

$$\Rightarrow \angle BAC + 55^{\circ} + 65^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BAC + 120^{\circ} = 180^{\circ}$$

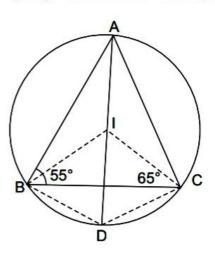
$$\Rightarrow \angle BAC = 180^{\circ} - 120^{\circ}$$

$$\angle$$
 BAC = 60°

- : I is the incenter of ΔABC.
- ∴I lines on the bisector of ∠ BAC

$$\therefore \angle BAI = \angle CAI = \frac{60\Upsilon}{2} = 30^{\circ}$$

[Angle in a semi - circle]



[Angle sum of triangle]

So,
$$\angle$$
 BAD = \angle CAD = 30°

 \because I line on the angle bisector of \angle ACB

$$\therefore \angle ACI = \frac{65\Upsilon}{2} = 32\frac{1\Upsilon}{2} = 32.5^{\circ}$$

Now, $\angle DCI = \angle ACD - ACI$

$$=90^{\circ}-32\frac{11}{2}=57\frac{11}{2}=57.5^{\circ}$$

(iv) : BI is the angle bisector of \angle ABC

$$\angle$$
 IBA = \angle IBC = $\frac{55\Upsilon}{2}$ = 27.5°

Now, in $\triangle BIC$, we have

$$\angle BIC + \angle ICB + \angle IBC = 180^{\circ}$$

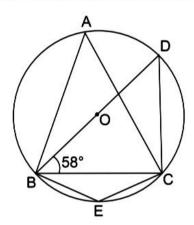
[Angle sum of a triangle]

$$\Rightarrow$$
 $\angle BIC + (32.5^{\circ} + 27.5^{\circ}) = 180^{\circ}$

$$\Rightarrow$$
 $\angle BIC + 60^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle BIC = 180^{\circ} - 60^{\circ} = 120^{\circ}$

29. In the given figure, BD is the diameter of the circle, $\angle DBC = 58^{\circ}$.



Calculate

(iii) ∠BAC

(i) In $\triangle BCD$, we have

$$\angle DBC = 58^{\circ}$$
, $\angle BCD = 90^{\circ}$

[Angle in a semicircle]

$$\angle BDC = 180^{\circ} - (58^{\circ} + 90^{\circ}) \\
= 180^{\circ} - 148^{\circ} = 32^{\circ}$$

(ii) BECD is a cyclic quadrilateral

 \therefore \angle BEC + \angle BDC = 180° [Sum of opposite angles of a quadrilateral]

$$\Rightarrow \angle BEC = 180^{\circ} - 32^{\circ} \Rightarrow \angle BEC = 148^{\circ}$$

(iii)
$$\angle BAC = \angle BDC = 32^{\circ}$$

[Angles in the same segment]