1. In the figure, point A is on the bisector of $\angle XYZ$. If AX = 2 cm then find AZ.

Given: Point A is on the bisector of $\angle XYZ$ AX = 2 cm

To find: AZ

Solution: Point A is on the bisector of ∠XYZ

∴ A is equidistant from the sides of ∠XYZ

(Angle bisector theorem)

 $\therefore AX = AZ \qquad(AX = 2 \text{ cm given})$ $\therefore AZ = 2 \text{ cm}$

2) In the figure, $\angle RST = 56^{\circ}$, seg PT \perp ray ST, seg PR \perp ray SR and seg PR \cong seg PT. Find the measure of $\angle RSP$. State the reason for your answer.

Ray PS is a bisector of
$$\angle$$
RST.

$$\therefore \angle$$
RSP = $\frac{1}{2} \angle$ RST

$$= \frac{1}{2} \times 56^{0} \dots (given)$$

$$\therefore \angle$$
RSP = 28^{0}

3) In Δ PQR, PQ = 10 cm, QR = 12cm, PR = 8cm. Find out the greatest and smallest angle of the triangle.

Solution: In $\triangle PQR$, PQ = 10 cm QR = 12 cm PR = 8 cm. $\therefore QR > PQ > PR$ $\therefore \angle P > \angle R > \angle Q$ Given 12 > 10 > 8

∴ ∠Q is smallest angle

(Angle opposite to smallest side is smaller

PowerDirector

4) In Δ FAN, \angle F = 80°, \angle A = 40°. Find out the greatest and the smallest side of the triangle. State the reason.

Solution: In $\triangle FAN$, Sum of measure of all angles of triangle is 180° $\angle F + \angle A + \angle N = 180^{\circ}$

$$\therefore 80^{0} + 40^{0} + \angle N = 180^{0}$$

$$120^{\circ} + \angle N = 180^{\circ}$$

$$\therefore \angle N = 180^{\circ} - 120^{\circ}$$

$$\therefore \angle N = 60^{\circ}$$

$$80^{\circ} > 60^{\circ} > 40^{\circ}$$

$$\angle F > \angle N > \angle A$$

AN > FA > FN AN is the greatest side of the triangle

AN is the greatest side of the triangle. FN is the smallest side of the triangle.

5) Prove that an equilateral triangle is equiangular.

VINEMACTED

Given: In Δ POR, PO = OR = PR

To prove:
$$\angle P \cong \angle Q \cong \angle R$$

$$seg PQ \cong seg PR (given)$$

$$\angle Q \cong \angle R$$
 [Isosceles triangle theorem](1)

$$seg PQ \cong seg QR (given)$$

$$\angle P \cong \angle R$$
 [Isosceles triangle theorem](2)

$$seg QR \cong seg PR (given)$$

$$\angle Q \cong \angle P$$
 [Isosceles triangle theorem](3)

$$\angle P \cong \angle Q \cong \angle R...(from 1, 2 \& 3)$$

Q