Experiment No. 4

Experiment No. 5

Sr.no.	Sample	Colour	Approximate	
		Produced	pН	
1	Dilute HCI	Red	0-1	
2	Dilute NaOH solution	Purple	14	
3	Lemon juice	Orange	2	
4	Distilled water	Green	7	
5	Dilute solution of	Yellow	3	
6	Sodium sulphate solution	Green	7	
7	Ammonium chloride solution	Blue	11	
8	Sodium bicarbonate Solution.	Blue	9	

Experiment No. 10

Observation No.	Angle of incidence (i)	Angle of reflection (r)
1	30°	30°
2	40°	40°
3	50°	50°
4	60°	60°
amount of the	70°	70°

Conclusion:

Like light waves, sound waves, too, get reflected from a solid or liquid surfaces.

Experiment No. 9 (Method 2)

Distant object	Distance between the pole of the mirror and the image		
Window	$d_1 = .10.1$ cm		
tree	$d_2 = .10.2$. cm		
house	$d_3 = 10$ cm		
house	Mean distance = $f = \frac{d_1 + d_2 + d_3}{3} = 10.1$ cm		

Conclusion:

The distance between the mirror and the screen is approximately equal to the focal length of the given concave mirror.