i ne distribution below gives the marks obtained by 80 students on a test :

Marks	Less	Less	Less	Less	Less	Less
	than 10	than 20	than 30	than 40	than 50	than 60
Number of Students	3	12	27	57	75	80

The modal class of this distribution is :

(A)
$$10 - 20$$

(B)
$$20 - 30$$

(C)
$$30 - 40$$

The curved surface area of a cone having height 24 cm and radius 7 cm, is

(A)
$$528 \text{ cm}^2$$

(B)
$$1056 \text{ cm}^2$$

(C)
$$550 \text{ cm}^2$$

(D)
$$500 \text{ cm}^2$$

The distance between the points (0, $2\sqrt{5}$) and (– $2\sqrt{5}$, 0) is

(A)
$$2\sqrt{10}$$
 units

(B)
$$4\sqrt{10}$$
 units

(C)
$$2\sqrt{20}$$
 units

Which of the following is a quadratic polynomial having zeroes $\frac{-2}{3}$ and $\frac{2}{3}$?

(A)
$$4x^2 - 9$$

(B)
$$\frac{4}{9}(9x^2+4)$$

(C)
$$x^2 + \frac{9}{4}$$

(D)
$$5(9x^2-4)$$

If the value of each observation of a statistical data is increased by 3, then the mean of the data

(a) If $\sin \theta + \cos \theta = \sqrt{3}$, then find the value of $\sin \theta \cdot \cos \theta$.

OR

(b) If $\sin \alpha = \frac{1}{\sqrt{2}}$ and $\cot \beta = \sqrt{3}$, then find the value of $\csc \alpha + \csc \beta$.