1. (d) Least possible number of planks =
$$\frac{\text{Sum of } 42,49 \text{ and } 63}{\text{HCF of } 42,49 \text{ and } 63} = \frac{154}{7} = 22.$$

2. (b) Zero of p(x)

Let
$$p(x) = ax + b$$
Put
$$x = k$$

$$p(k) = ak + b = 0$$

 \therefore k is zero of p(x).

3. (c) HCF of 52 and 91 = Height possible speed = 13 m/min.

4. (a)

8. (b)

- 5. (b) Let ABC is a triangle with coordinates of vertices A(0, 3), B(-4, 0) and C(4, 0).
 - :. Distance between AB = 5 units, AC = 5 units and BC = 8 units [using distance formula]
 - ∴ ∆ABC is an isosceles triangle.

- **6.** (*c*) LCM (20, 25, 30) = 300 minutes 300 minutes after 12 noon = 5:00 p.m.
- 7. (c) We have $(1 + \tan^2 \theta) \sin^2 \theta = \sec^2 \theta . \sin^2 \theta$

$$= \frac{1}{\cos^2 \theta} \cdot \sin^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta$$

$$\frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta} = \frac{\frac{a \sin \theta}{\cos \theta} + \frac{b \cos \theta}{\cos \theta}}{\frac{a \sin \theta}{\cos \theta} - \frac{b \cos \theta}{\cos \theta}} = \frac{a \tan \theta + b}{a \tan \theta - b}$$

$$= \frac{a \times \frac{a}{b} + b}{a \times \frac{a}{b} - b} = \frac{a^2 + b^2}{a^2 - b^2}$$

9. (*c*) We have PQ || RS

$$\therefore$$
 $\Delta TRS \sim \Delta TPQ$ (By AA similarity)

$$\therefore \frac{RT}{PT} = \frac{RS}{PO} \qquad [\because CPST]$$

$$\frac{x-1}{2x+2} = \frac{x-3}{x+1}$$

$$\Rightarrow$$
 $x^2 - 1 = 2x^2 - 6x + 2x + 6$

$$\Rightarrow \qquad x^2 - 4x - 5 = 0$$

$$\Rightarrow \qquad (x-5)(x+1) = 0$$

$$\Rightarrow \qquad x-5 = 0 \text{ or } x+1=0$$

$$\Rightarrow x = 5 \text{ or } x = -1 \text{ (not possible)}$$

$$\Rightarrow$$
 $x = 5$

In
$$\triangle QPR$$
 and $\triangle SPR$, $\angle QPR = \angle SPR$

$$PR = PR$$

(Common)

$$\therefore \frac{PR}{PR} = \frac{QR}{SR}$$

$$OR = SR = 8 \text{ cm}$$

11. (*a*) In figure,

$$\therefore$$
 $\angle RNP = \angle NMQ = 65^{\circ}$

(Corresponding angles)

(By BPT)

[::MN = QP]

Also
$$\frac{RN}{NM} = \frac{RP}{PO}$$

$$RN = RP$$

$$\therefore$$
 $\angle RNP = \angle RPN = 65^{\circ}$

In ΔRNP,

 \Rightarrow

$$\angle R + \angle RNP + \angle RPN = 180^{\circ}$$

$$\Rightarrow$$
 $\angle R + 65^{\circ} + 65^{\circ} = 180^{\circ}$

12. (a) Let radii of two circles be r_1 and r_2 .

ATQ,
$$\frac{\pi r_1^2}{\pi r_2^2} = \frac{16}{25}$$

$$\Rightarrow \qquad \frac{r_1^2}{r_2^2} = \frac{16}{25}$$

$$\Rightarrow \frac{r_1}{r_2} = \frac{4}{5}$$

Ratio of their circumference =
$$\frac{2\pi r_1}{2\pi r_2} = \frac{r_1}{r_2} = \frac{4}{5}$$

13. (d) Diameter of largest possible circle = 20 cm.

$$\therefore \text{ Area of circle} = \pi r^2 = \pi \times (10)^2 = 100\pi \text{ cm}^2$$

∴ Area of 6 circles =
$$6 \times 100\pi = 600\pi$$
 cm² (∴ there are six faces in a cube)

Also, surface area of cube =
$$6 \times (20)^2 = 2400 \text{ cm}^2$$

Area of unpainted surface =
$$2400 \text{ cm}^2 - 600\pi \text{ cm}^2 = 2400 \text{ cm}^2 - 600 \times \frac{22}{7} \text{ cm}^2 = 514.28 \text{ cm}^2$$
.

14. (c) Required mean =
$$\frac{(50 \times 38) - (55 + 45)}{(50 - 2)} = \frac{1800}{48} = 37.5$$

15. (d) Let radii of two spheres be r_1 and r_2 .

Ratio of their volumes =
$$\frac{\frac{4}{3}\pi r_1^3}{\frac{4}{3}\pi r_2^3} = \frac{8}{27}$$

$$\Rightarrow \qquad \frac{r_1^3}{r_2^3} = \frac{8}{27}$$

$$\Rightarrow \qquad \frac{r_1}{r_2} = \frac{2}{3}$$

Ratio of their surface areas = $\frac{4\pi r_1^2}{4\pi r_2^2} = \frac{r_1^2}{r_2^2} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$

16. (b) Mean =
$$\frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = m$$

$$\Rightarrow$$
 $x_1 + x_2 + \dots + x_n = nm$

$$\Rightarrow x_1 + x_2 + \dots + x_{n-1} + x_n = nm$$

$$\Rightarrow \qquad x_1 + x_2 + \dots + x_{n-1} = nm - x_n \qquad \dots (i)$$

New sum =
$$x_1 + x_2 + ... + x_{n-1} + x = nm - x_n + x$$
 [From (i)]

New mean
$$= \frac{nm - x_n + x}{n}$$

17. (a) As
$$\tan \theta = \frac{a}{x}$$

$$\therefore \qquad \text{Perpendicular} = a \text{ and Base} = x$$

$$\Rightarrow$$
 Hypotenuse = $\sqrt{a^2 + x^2}$

So,
$$\frac{x}{\sqrt{a^2 + x^2}} = \frac{\text{Base}}{\text{Hypotenuse}} = \cos \theta$$

18. (d) 1, \because It is a sure event.

19. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

20. (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A).

21. Equations are 4x + py + 8 = 0 and 2x + 2y + 2 = 0

Here,
$$a_1 = 4, b_1 = p, c_1 = 8$$
 and $a_2 = 2, b_2 = 2, c_2 = 2$

For unique solution,
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$\Rightarrow \qquad \frac{4}{2} \neq \frac{p}{2} \Rightarrow p \neq 4$$

$$\frac{QR}{QS} = \frac{QT}{PR}$$
 and $\angle 1 = \angle 2$

To Prove:

 $\Delta PQS \sim \Delta TQR$

Proof: In $\triangle PQR$,

$$\angle 1 = \angle 2$$

[Given]

PQ = PR [Sides opposite to equal angles]

$$\frac{QR}{QS} = \frac{QT}{PR}$$

[Given]

or

$$\frac{QR}{QS} = \frac{QT}{PQ}$$

[:: PQ = PR]

In $\triangle PQS$ and $\triangle TQR$,

$$\frac{QR}{OS} = \frac{QT}{PO}$$

(Proved above)

$$\Rightarrow$$

$$\frac{QR}{QT} = \frac{QS}{QP}$$

$$\angle 1 = \angle 1$$

[Common]

٠.

$$\Delta PQS \sim \Delta TQR$$

[SAS]

23. PT is tangent to circle at T.

In $\triangle OPT$, $OT \perp PT$

$$OP^2 = OT^2 + PT^2$$
 (Using Pythagoras theorem)

$$\Rightarrow$$

:.

$$(17)^2 = OT^2 + (8)^2$$

$$\rightarrow$$

$$289 = OT^2 + 64$$

$$\Rightarrow$$

$$OT^2 = 289 - 64$$

$$\Rightarrow$$

$$OT^2 = 225$$

$$\rightarrow$$

$$OT = \sqrt{225} = 15 \text{ cm}$$

Radius of circle = 15 cm

OR

Here, radius of the larger circle is x units.

Radius of the smaller circle is y units.

C is the mid-point of AB, also $OC \perp AB$.

∴ In ∆OCB.

$$OB^2 = OC^2 + BC^2$$

(By Pythagoras theorem)

$$\therefore BC^2 = x^2 - y^2 \Rightarrow BC = \sqrt{x^2 - y^2}$$

: AB = 2(BC) =
$$2\sqrt{x^2 - y^2}$$

AB = 2(BC) = $2\sqrt{x^2 - y^2}$ (Perpendicular drawn from the centre on chord bisects the chord)

24. Here, radius(r) of sector = 21 cm and sector angle (
$$\theta$$
) = 60°

$$\therefore \text{ Area of sector} = \frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21 \text{ cm}^2 = \frac{1}{6} \times 22 \times 3 \times 21 = 231 \text{ cm}^2$$

25. We have
$$\cos^2 30^\circ + \sin^2 45^\circ - \frac{1}{3} \tan^2 60^\circ + \cos 90^\circ$$

$$= (\cos 30^\circ)^2 + (\sin 45^\circ)^2 - \frac{1}{3} (\tan 60^\circ)^2 + \cos 90^\circ$$

$$= \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 - \frac{1}{3} (\sqrt{3})^2 + 0$$

$$= \frac{3}{4} + \frac{1}{2} - \frac{3}{3} = \frac{3}{4} + \frac{1}{2} - 1 = \frac{3 + 2 - 4}{4} = \frac{5 - 4}{4} = \frac{1}{4}$$

OR

Given,
$$\tan \theta = \frac{a}{b}$$

We have
$$\frac{a \sin \theta - b \cos \theta}{a \sin \theta + b \cos \theta}$$

Dividing numerator and denominator by $\cos \theta$, we get

$$\frac{a\frac{\sin\theta}{\cos\theta} - b\frac{\cos\theta}{\cos\theta}}{a\frac{\sin\theta}{\cos\theta} + b\frac{\cos\theta}{\cos\theta}} = \frac{a\tan\theta - b}{a\tan\theta + b} = \frac{a\left(\frac{a}{b}\right) - b}{a\left(\frac{a}{b}\right) + b}$$

$$= \frac{a^2 - b^2}{a^2 + b^2}$$
 (:: Given)

26. Let $3\sqrt{3}$ be a rational number

Then it will be of the form $\frac{p}{q}$, where p and q are integers having no common factor other than 1, and $q \neq 0$.

Now,
$$\frac{p}{q} = 3\sqrt{3}$$

$$\Rightarrow \frac{p}{3q} = \sqrt{3}$$
...(i)

Since, p is an integer and 3q is also an integer $(3q \neq 0)$

So, $\frac{p}{3q}$ is a rational number.

From (i), we get $\sqrt{3}$ is a rational number.

But this contradicts the fact because $\sqrt{3}$ is an irrational number.

Hence, our supposition is wrong. Hence, $3\sqrt{3}$ is an irrational number.

27. Given,
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{x} = \frac{1}{a+b+x}; (a \neq 0, b \neq 0, x \neq 0)$$

$$\Rightarrow \qquad \frac{1}{a} + \frac{1}{b} = \frac{1}{a+b+x} - \frac{1}{x}$$

$$\Rightarrow \qquad \frac{b+a}{ab} = \frac{x-a-b-x}{(a+b+x)x}$$

$$\Rightarrow \qquad \frac{a+b}{ab} = \frac{-(a+b)}{(a+b+x)x}$$

$$\Rightarrow \qquad ax + bx + x^2 = -ab$$

$$\Rightarrow \qquad x^2 + ax + bx + ab = 0$$

$$\Rightarrow \qquad x(x+a) + b(x+a) = 0$$

$$\Rightarrow \qquad (x+a)(x+b) = 0$$

$$\Rightarrow \qquad x + a = 0 \text{ or } x + b = 0$$

$$\Rightarrow \qquad x = -a, -b$$

28. 1st equation:

$$2y - x = 8$$

$$\Rightarrow 2y = 8 + x$$

$$\Rightarrow y = \frac{8+x}{2}$$

The solution table for 2y - x = 8 is:

x	-4	2	6
у	y 2		7

2nd equation:

$$5y - x = 14$$
$$5y = 14 + x$$
$$y = \frac{14 + x}{5}$$

The solution table for 5y - x = 14 is:

x	1	6	-4
y	3	4	2

3rd equation:
$$-x + \frac{y}{2} = \frac{1}{2} \Rightarrow -2x + y = 1$$

 $y = 1 + 2x$

The solution table for -2x + y = 1 is:

x	0	1	- 1
y	1	3	- 1

 \therefore From graph, vertices of the triangle are (2, 5), (1, 3) and (-4, 2).

Let the ten's and the unit's digit be y and x respectively.

So, the number be 10y + x

The number when digits are reversed is 10x + y

Now,
$$7(10y + x) = 4(10x + y) \Rightarrow 2y = x$$
 ...(i)

Also,
$$x - y = 3 \qquad \qquad \dots(ii) \text{ (As } x > y)$$

Solving (i) and (ii), we get y = 3 and x = 6

Hence, the number is 36.

29. Let AB be a pillar and BC be the flagstaff.

According to question, $BC = 5 \text{ m}, \angle ADB = 45^{\circ}, \angle ADC = 60^{\circ} \text{ C}$ Let AB = x m and AD = v m

In right-angled $\triangle BAD$, $\frac{AB}{AD} = \tan 45^{\circ}$

 $\Rightarrow \frac{xD}{y} = 1 \Rightarrow x = y \dots(i)$

In right-angled ΔCAD , $\frac{AC}{AD} = \tan 60^{\circ}$

 $\Rightarrow \qquad x + 5 = \sqrt{3}x \quad \Rightarrow \quad 5 = x(\sqrt{3} - 1)$

 \therefore Height of the pillar = 6.83 m.

To prove: QORP is a cyclic quadrilateral.

Proof: PQ is a tangent to the circle and OQ is radius.

 \therefore OQ \perp PQ. (Radius is perpendicular to the tangent at the point of contact)

$$\therefore \qquad \angle OQP = 90^{\circ}$$

Similarly,
$$\angle ORP = 90^{\circ}$$

In quadrilateral QORP,

$$\angle$$
RPQ + \angle OQP + \angle ORP + \angle QOR = 360° (Angle sum property of quadrilateral)
 \angle RPQ + 90° + 90° + \angle QOR = 360°
 \angle RPQ + \angle QOR = 180°

⇒ ∠RPQ + ∠QOR = 180° ⇒ In quadrilateral QORP, opposite angles are supplementary.

.. QORP is a cyclic quadrilateral.

OR

Given: BD is a diameter of the circle with centre O, ABCD is a cyclic quadrilateral.

To find: ∠BCP

 \Rightarrow

Sol. Since BD is the diameter of the circle,

$$\Rightarrow$$
 BCD is a semicircle.

$$\Rightarrow$$
 $\angle BCD = 90^{\circ}$

But,
$$\angle$$
BCP + \angle BCD + \angle DCQ = 180°

(Angle in a semicircle)
(Sum of all the angles at a point on the line)

$$\Rightarrow$$
 $\angle BCP + 90^{\circ} + 40^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle BCP = 180^{\circ} - 130^{\circ} = 50^{\circ}$

- 31. Number of ways to draw a card = 52 (Total possible outcomes)
 - (i) A = card is a king of red colour Number of favourable cases = 2

$$P(A) = \frac{2}{52} = \frac{1}{26}$$

(ii) B = card is a face card.

Number of favourable cases = 12

$$P(B) = \frac{12}{52} = \frac{3}{13}$$

(iii) C = card is a queen of diamonds

Number of favourable cases = 1

$$P(C) = \frac{1}{52}$$

32. Let Ist term of the AP be a and common difference be d.

According to question,

$$a_4 + a_8 = 24$$

$$a + 3d + a + 7d = 24$$

$$\Rightarrow$$

$$2a + 10d = 24$$

$$\Rightarrow$$

$$a + 5d = 12$$

$$a_6 + a_{10} = 44$$

$$\Rightarrow$$

$$a + 5d + a + 9d = 44$$

$$\Rightarrow$$
 \Rightarrow

$$2a + 14d = 44$$

$$a + 7d = 22$$
 ...(ii)

...(i)

Subtracting (i) from (ii), we get

$$a + 7d - a - 5d = 22 - 12$$

$$\Rightarrow$$

$$2d = 10$$

$$\Rightarrow$$

$$d = 5$$

Putting d = 5 in (i), we get

$$a + 5 \times 5 = 12$$
 \Rightarrow $a = -13$
 $\therefore a = a_1 = -13, a_2 = a + d = -13 + 5 = -8,$
 $a_3 = a + 2d = -13 + 2 \times 5 = -3$

OR

Let height of each candle = x unit.

Height of 1st candle burnt in 1 hr = $\frac{x}{6}$ unit

and height of 2^{nd} candle burnt in 1 hr = $\frac{x}{8}$ unit

Let the required time = y hrs.

Length of 1st candle burnt after y hrs = $\frac{y \times x}{6}$ unit

Height of 1st candle left = $\left(x - \frac{xy}{6}\right)$

Length of 2nd candle burnt after y hrs = $\left(\frac{y \times x}{8}\right)$ unit

Height of 2nd candle left = $\left(x - \frac{xy}{8}\right)$

A.T.Q.,

Height of 1st candle = $\frac{1}{2}$ Height of 2nd candle

$$\Rightarrow \quad x - \frac{xy}{6} = \frac{1}{2} \left(x - \frac{xy}{8} \right) \Rightarrow x \left(1 - \frac{y}{6} \right) = \frac{1}{2} x \left(1 - \frac{y}{8} \right)$$

$$1 - \frac{y}{6} = \frac{1}{2} \left(1 - \frac{y}{8} \right) \Rightarrow 2 - \frac{y}{3} = 1 - \frac{y}{8}$$

$$2 - 1 = \frac{y}{3} - \frac{y}{8}$$

$$1 = \frac{8y - 3y}{24} \Rightarrow 24 = 5y \Rightarrow y = \frac{24}{5}$$

$$y = 4.8 \text{ hrs.} = 4 \text{ hrs.} 48 \text{ minutes}$$

33. Given: DB \perp BC, AC \perp BC and DE \perp AB.

To Prove:

$$\frac{BE}{DE} = \frac{AC}{BC}$$

Proof:

$$\angle DEB = \angle ACB$$

 $\angle DBE = 90^{\circ} - \angle ABC$

[Each 90°] ...(i)

:.

$$\angle DBE + \angle BDE = 90^{\circ}$$

$$\angle ABC = \angle BDE$$

...(ii)

From (i) and (ii), we get

[By AA Similarity]

:.

$$\frac{BE}{DE} = \frac{AC}{BC}$$

Hence proved.

34. Radius of cylindrical portion = r = 14 cm

Height of cylindrical portion = h = 28 cm - 14 cm = 14 cm

 \therefore Volume of cylindrical portion = $\pi r^2 h$

$$= \pi \times (14)^2 \times 14 = \pi \times (14)^3 \text{ cm}^3 = 8624 \text{ cm}^3$$

Radius of the hemispherical portion = r = 14 cm

$$\therefore$$
 Volume of hemispherical portion = $\frac{2}{3}\pi r^3 = \frac{2}{3}\pi \times (14)^3$ cm³ = $\frac{17248}{3}$ cm³

Volume of the solid =
$$\left(\frac{17248}{3} + 8624\right)$$
 cm³ = $\left(\frac{17248 + 25872}{3}\right)$ cm³ = $\frac{43120}{3}$ cm³

OR

Height of cylinder = h = 20 cm

Radius of cylinder = r = 3.5 cm = Radius of each hemisphere

 $\therefore \ \, \text{Total surface area of the article} = 2 \times C.S.A. \ of a \ hemisphere + C.S.A. \ of the \ cylinder$

$$= 2 \times 2\pi r^{2} + 2\pi rh = 2\pi r(2r + h)$$

$$= 2 \times \frac{22}{7} \times 3.5(2 \times 3.5 + 20)$$

$$= 44 \times 0.5(7 + 20) = 44 \times 0.5 \times 27 \text{ cm}^{2} = 594 \text{ cm}^{2}$$

35. We choose step-deviation method for finding the mean.

By step deviation method, which is given as follows:

Number of pencils	Number of boxes (f _i)	Class marks (x _i)	$u_i = \frac{x_i - a}{h}$	$f_i u_i$
49.5 – 52.5	15	51	-2	- 30
52.5 – 55.5	110	54	- 1	- 110
55.5 – 58.5	135	$\boxed{57 = a}$	0	0
58.5 – 61.5	115	60	1	115
61.5 – 64.5	25	63	2	50
Total	$\Sigma f_i = 400$			$\Sigma f_i u_i = 25$

We have a = 57, h = 3, $\Sigma f_i = 400$ and $\Sigma f_i u_i = 25$

$$\therefore \text{ Mean} = a + h \times \frac{\sum f_i u_i}{\sum f_i} = 57 + 3 \times \frac{1}{400} \times 25 = 57.19$$

Hence, the mean number of pencils kept in a packed box is 57.

36. (i) OB = OA = radii
$$\sqrt{[(2a-1)+3]^2 + (7+1)^2} = 10$$

On squaring both sides, we get

$$[(2a-1)+3]^{2} + (8)^{2} = 100$$

$$\Rightarrow 4a^{2} + 4 + 8a + 64 = 100$$

$$\Rightarrow 4a^{2} + 8a - 32 = 0$$

$$\Rightarrow a^{2} + 2a - 8 = 0$$

$$\Rightarrow a^{2} + 4a - 2a - 8 = 0$$

$$\Rightarrow a(a+4) - 2(a+4) = 0$$

$$\Rightarrow a = -4, a = 2$$

$$\angle AOB = 90^{\circ}$$

:. By pythagoras theorem

$$AB^2 = OA^2 + OB^2$$

 $AB^2 = (10)^2 + (10)^2$
 $AB^2 = 100 + 100 = 200$
 $AB = 10\sqrt{2}$ units

If A lies on the x-axis, then its coordinates be (x, 0)

$$\Rightarrow \sqrt{(2a-1-x)^2 + (7)^2} = 10$$

$$\Rightarrow (2a-1-x)^2 + 49 = 100$$

$$\Rightarrow (2a-1-x)^2 = 51$$
Here $a = 2 \Rightarrow (3-x)^2 = 51$

(OA = OB = radii of a circle)

$$\Rightarrow 9 + x^{2} - 6x = 51$$

$$\Rightarrow x^{2} - 6x = 42$$

$$\Rightarrow x^{2} - 6x - 42 = 0$$

$$x = \frac{6 \pm \sqrt{36 + 168}}{2} = \frac{6 \pm \sqrt{204}}{2}$$

$$x = \frac{6 \pm 2\sqrt{51}}{2} = 3 \pm \sqrt{51}$$

 \Rightarrow Possible values of x are $3 + \sqrt{51}$ and $3 - \sqrt{51}$.

OR

Point B lies on y-axis, then its coordinates are (0, y).

OB = radius
$$\sqrt{(2a-1-0)^2 + (7-y)^2} = 10$$

$$\Rightarrow (2 \times 2 - 1)^2 + (7-y)^2 = 100$$

$$\Rightarrow 9 + (7-y)^2 = 100$$

$$\Rightarrow 49 + y^2 - 14y = 91$$

$$\Rightarrow y^2 - 14y = 42$$

$$\Rightarrow y^2 - 14y - 42 = 0$$

$$\Rightarrow y = \frac{14 \pm \sqrt{196 + 168}}{2}$$

$$= \frac{14 \pm \sqrt{364}}{2} = \frac{14 \pm 2\sqrt{91}}{2} = 7 \pm \sqrt{91}$$

 \therefore Possible values of y are $7 + \sqrt{91}$ and $7 - \sqrt{91}$.

37. (*i*) AP = 2.75, 3, 3.25 ... Here,
$$a = 2.75$$
, $d = 0.25$

$$a_n = 7.75$$

$$a_n = a + (n-1)d$$

$$\Rightarrow 7.75 = 2.75 + (n-1)0.25$$

$$\Rightarrow \frac{5}{0.25} = n-1$$

$$\Rightarrow 20 = n-1 \Rightarrow n = 21$$

(ii)
$$n = 25$$

 $a_{25} = a + 24d$
 $= 2.75 + 24(0.25) = 8.75$

On 25th day he will save ₹ 8.75.

$$a_{14} = a + 13d = 2.75 + 13 \times 0.25 = 6$$

On 14th day he will save ₹ 6.00

Difference =
$$a_{25} - a_{14} = ₹ 8.75 - ₹ 6 = ₹ 2.75$$

(iii)
$$S_{20} = \frac{10}{2} [2 \times 2.75 + (10 - 1) \times 0.25]$$

= 5(5.50 + 2.25) = 5 × 7.75 = 38.75

Hence, sum of amount saved in first 10 days = ₹ 38.75

$$S_{20} = \frac{20}{2} [2 \times 2.75 + (20 - 1) \times 0.25]$$
$$= 10(5.50 + 4.75) = 10 \times 10.25 = 102.50$$

Hence, sum of amount saved in first 20 days = ₹ 102.50.

In ABP, let BP = x m**38.** (*i*)

:
$$PC = (100 x) m$$

and let AP = H = Height of lighthouse

$$\Rightarrow H = \frac{100}{(\sqrt{3} + 1)} = \frac{100}{(\sqrt{3} + 1)} \frac{(\sqrt{3} - 1)}{(\sqrt{3} - 1)}$$
$$= \frac{100(\sqrt{3} - 1)}{2} = 50(\sqrt{3} - 1) \text{ m}$$

(ii) BP =
$$x = 50 (\sqrt{3} - 1)$$
 m

(iii) In
$$\triangle$$
APB,
$$\sin 45^{\circ} = \frac{AP}{AB}$$
$$AB = \sqrt{2} (AP) = \sqrt{2} \times 50 \times (\sqrt{3} - 1)$$
$$= 50(\sqrt{6} - \sqrt{2}) \text{ m}$$

OR $\frac{AP}{AC} = \sin 30^{\circ}$ In ΔAPC, $\frac{AP}{\sin 30^{\circ}} = AC$ AC = $\frac{50(\sqrt{3}-1)}{\frac{1}{2}}$ = $100(\sqrt{3}-1)$ m \Rightarrow