Chapter 2

314	Which of the following is not a linear equation?				
	a. $x+y-2=0$ b. $2x+5=$	11 60%	c.	$4x^2 = 15$	
	The solution of the equation $ax + b = 0$ is				

a.
$$x+y-2=0$$

b.
$$2x + 5 = 11$$

c.
$$4x^2 = 15$$

d.
$$\frac{2}{x} = 9$$

2. The solution of the equation
$$ax + b = 0$$
 is

a.
$$\frac{-a}{b}$$
.

b.
$$\frac{a}{b}$$
.

c.
$$\frac{b}{a}$$
.

d.
$$\frac{-b}{a}$$
.

3. The solution of the equation
$$3x - 1 = x + 3$$
 is

a.
$$x = 1$$
.

b.
$$x = 3$$
.

c.
$$x = 2$$
.

d.
$$x = 0$$
.

4. If
$$6 = \frac{2}{3}(5x - 1)$$
, then the value of x is

5. The solution of the equation
$$4x - \frac{2}{3} = \frac{25}{3} + x$$
 is

$$x = 4$$
.

b.
$$x = 2$$
.

c.
$$x = 5$$
.

d.
$$x = 3$$
.

a.
$$x + 1 = 0$$
.

$$b \quad r - 1 = 2$$

b.
$$x-1=2$$
.

c.
$$2x + 3 = 1$$
.

d.
$$\frac{5}{2}x + \frac{11}{3} = \frac{x}{2} + \frac{5}{3}$$
.

7. If p and q are positive integers, then the solution of the equation
$$px = q$$
 is always a

a. positive integer.

b. positive rational number.

c. negative integer.

d. negative rational number.

8. If
$$\frac{2}{5x} - \frac{5}{3x} = \frac{1}{15}$$
, then x is equal to

9. The digit at tens place of a two digit number is three times the digit at one's place. If the digit at one place is x, then the number in terms of x is

10. If the sum of three consecutive positive integers is 48 then the smallest integer is

Chapter 3

1. Number of diagonals in a convex quadrilateral is

5. In Figure 1, the value of
$$x$$
 is

Multiple-choice Questions

Select the correct answer.

Chapter 1

1.
$$\frac{-2}{-19}$$
 is

a. a positive rational number.

b. either a positive or a negative rational number.

c. neither a positive nor a negative rational number.

d. a negative rational number.

2. Rational number $\frac{-11}{7}$ lies between

a. 0 and 1.

b. 0 and -1.

c. -1 and -2.

d. -2 and -3.

3. If $\left(\frac{-2}{15}\right) + \left(\frac{-13}{5}\right) = \left(\frac{-13}{5}\right) + \frac{a}{b}$, then $\frac{a}{b}$ is equal to

a. 0.

b. $\frac{15}{-2}$.

c. $\frac{-2}{15}$.

d. $\frac{2}{15}$.

4. If $\frac{19}{-5} + \left[\frac{-3}{11} + \left(\frac{-7}{8}\right)\right] = \left[\frac{19}{-5} + \left(\frac{a}{b}\right)\right] + \left(\frac{-7}{8}\right)$, then $\frac{a}{b}$ is equal to

a. $\frac{3}{11}$.

b. $\frac{7}{8}$.

c. $\frac{8}{-7}$.

d. $\frac{-3}{11}$.

5. The property of rational numbers illustrated by the mathematical expression

$$\left(\frac{2}{9} + \frac{-3}{5}\right) \times \frac{4}{7} = \left(\frac{2}{9} \times \frac{4}{7}\right) + \left(\frac{-3}{5} \times \frac{4}{7}\right)$$
 is

a. commutativity of multiplication.

b. distributivity of multiplication over addition.

c. associativity of multiplication.

d. associativity of addition.

6. If the sum of two rational numbers is $\frac{9}{10}$ and one of them is $\frac{-3}{5}$, then what is the other number is

a. $\frac{-3}{2}$.

b. $\frac{3}{2}$.

c. $\frac{2}{3}$.

d. $\frac{-2}{3}$.

7. By what rational number should $-2\frac{1}{3}$ be multiplied to get $-8\frac{3}{4}$ as a product?

a. $-4\frac{3}{4}$

b. $3\frac{3}{4}$

c. $-3\frac{3}{4}$

d. $4\frac{3}{4}$

8. Which of the following statements is true?

a. $\frac{-13}{15} \div \frac{3}{-5} = \frac{3}{-5} \div \frac{-13}{15}$

b. $\left(\frac{2}{5} \div \frac{3}{-7}\right) \div \frac{1}{2} = \frac{2}{3} \div \left(\frac{3}{-7} \div \frac{1}{2}\right)$

c. $\left(\frac{1}{5} - \frac{2}{3}\right) \div \frac{5}{11} = \frac{1}{5} \div \frac{5}{11} - \frac{2}{3} \div \frac{5}{11}$

d. $\frac{-4}{9} \div \left(\frac{13}{12} \div \frac{12}{-5}\right) = \left(\frac{-4}{9} \div \frac{13}{12}\right) \div \frac{12}{-5}$

9. The sum of the multiplicative inverse and additive inverse of 2 is

a. $\frac{3}{2}$.

b. $\frac{-3}{2}$.

c. $\frac{5}{2}$.

d. $\frac{-5}{2}$.