Mathematics

(www.tiwariacademy.com)

(Chapter -11) (Surface Areas and Volumes) (Exercise 11.2)

(Class - 9)

Question 1:

Find the surface area of a sphere of radius:

(i) 10.5 cm

(ii) 5.6 cm

(iii) 14 cm

Answer 1:

(i) Radius of sphere r = 10.5 cm

Surface area of sphere = $4\pi r^2$

=
$$4 \times \frac{22}{7} \times 10.5 \times 10.5 = 4 \times 22 \times 1.5 \times 10.5 = 1386.00 \text{ cm}^2$$

Hence, the surface area of sphere is 1386 cm².

(ii) Radius of sphere r = 5.6 cm

Surface area of sphere = $4\pi r^2$

$$= 4 \times \frac{22}{7} \times 5.6 \times 5.6 = 4 \times 22 \times 0.8 \times 5.6 = 394.24 \text{ cm}^2$$

Hence, the surface area of sphere is 394.24 cm².

(iii) Radius of sphere r = 14 cm

Surface area of sphere = $4\pi r^2$

$$= 4 \times \frac{22}{7} \times 14 \times 14 = 4 \times 22 \times 2 \times 14 = 2464 \text{ cm}^2$$

Hence, the surface area of sphere is 2464 cm².

Question 2:

Find the surface area of a sphere of diameter:

(i) 14 cm

(ii) 21 cm

(iii) 3.5 m

Answer 2:

(i) Radius of sphere r = 14/2 = 7 cm

Surface area of sphere = $4\pi r^2$

$$= 4 \times \frac{22}{7} \times 7 \times 7 = 4 \times 22 \times 7 = 616 \text{ cm}^2$$

Hence, the surface area of sphere is 616 cm^2 .

(ii) Radius of sphere r = 21/2 = 10.5 cm

Surface area of sphere = $4\pi r^2$

$$= 4 \times \frac{22}{7} \times 10.5 \times 10.5 = 4 \times 22 \times 4.5 \times 10.5 = 1386 \text{ cm}^2$$

Hence, the surface area of sphere is 1386 cm².

(iii) Radius of sphere r = 3.5/2 = 1.75 cm

Surface area of sphere = $4\pi r^2$

$$= 4 \times \frac{22}{7} \times 1.75 \times 1.75 = 4 \times 22 \times 0.25 \times 1.75$$

 $= 38.50 \text{ cm}^2$

Hence, the surface area of sphere is 38.5 cm².

Question 3:

Find the total surface area of a hemisphere of radius 10 cm. (Use π = 3.14)

Answer 3:

Radius of hemisphere r = 10 cm

Surface area of hemisphere = $3\pi r^2$

$$= 3 \times 3.14 \times 10 \times 10 = 942 \text{ cm}^2$$

Hence, the total surface area of hemisphere is 942 cm².

Mathematics

(www.tiwariacademy.com)

(Chapter -11) (Surface Areas and Volumes) (Exercise 11.2)

Question 4:

The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.

Answer 4:

First Case:

Radius of balloon r = 7 cm

Surface area of balloon = $4\pi r^2$

$$= 4 \times \frac{22}{7} \times 7 \times 7 = 4 \times 22 \times 7 = 616 \text{ cm}^2$$

Hence, the surface area of balloon is 616 cm².

Second Case:

Radius of balloon R = 14 cm

Surface area of balloon = $4\pi R^2$

$$=4\times\frac{22}{7}\times14\times14$$

$$= 4 \times 22 \times 2 \times 14$$

$$= 2464 \text{ cm}^2$$

Hence, the surface area of balloon is 2464 cm².

Ratio of surface areas =
$$\frac{616}{2464} = \frac{1}{4}$$

Hence, the ratio of surface areas in two cases is 1:4.

Question 5:

A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin-plating it on the inside at the rate of ₹16 per 100 cm².

Answer 5:

Internal radius of hemispherical bowl r = 10.5/2 = 5.25 cm

Inner surface area of hemispherical bowl = $2\pi r^2$

$$= 2 \times \frac{22}{7} \times 5.25 \times 5.25 = 2 \times 22 \times 0.75 \times 5.25$$

$$= 173.25 \text{ cm}^2$$

Cost of tin-plating at the rate of ₹16 per 100 cm²

$$= ₹173.25 \times \frac{16}{100} = ₹27.72$$

Hence, the cost of tin-plating inside at the rate of ₹16 per 100 cm² is ₹ 27.72.

Question 6:

Find the radius of a sphere whose surface area is 154 cm².

Answer 6:

Surface area of sphere is 154 cm^2 . Let the radius of sphere = r cm

Surface area of sphere = $4\pi r^2$

$$\Rightarrow 154 = 4 \times \frac{22}{7} \times r^2 \Rightarrow r^2 = 154 \times \frac{7}{22} \times \frac{1}{4}$$

$$\Rightarrow r^2 = \frac{77}{4} \qquad \Rightarrow r = \sqrt{\frac{77}{4}} = \frac{7}{2}$$

Hence, the radius of sphere is $\frac{7}{2}$ cm.

Mathematics

(www.tiwariacademy.com)

(Chapter -11) (Surface Areas and Volumes) (Exercise 11.2)

Question 7:

The diameter of the moon is approximately one fourth of the diameter of the earth. Find the ratio of their surface areas.

Answer 7:

Let, the radius of Earth = R, therefore, the diameter of Earth = 2R

According to question, diameter of Moon $=\frac{1}{4}(2R)$, so, the radius of Moon $=\frac{\frac{1}{4}(2R)}{2}=\frac{1}{4}R$ Now.

$$\frac{\text{Surface area of Moon}}{\text{Surface area of Earth}} = \frac{4\pi \left(\frac{1}{4}R\right)^2}{4\pi (R)^2} = \frac{\frac{1}{16}R^2}{R^2} = \frac{1}{16}$$

Hence, the ratio of surface areas of Moon to Earth is 1:16.

Question 8:

A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm. Find the outer curved surface area of the bowl.

Answer 8:

Internal radius of hemispherical bowl r = 5 cm and thickness = 0.25 cm Therefore,

The outer radius of hemispherical bowl

$$= R = 5 + 0.25 = 5.25$$
 cm

Outer curved surface area of hemispherical bowl

$$= 2\pi R^2$$

$$=2\times\frac{22}{7}\times5.25\times5.25$$

$$= 2 \times 22 \times 0.75 \times 5.25$$

$$= 173.25 \text{ cm}^2$$

Hence, the outer curved surface area of hemispherical bowl is 173.25 cm².

Question 9:

A right circular cylinder just encloses a sphere of radius r (see Figure). Find

- (i) surface area of the sphere,
- (ii) curved surface area of the cylinder,
- (iii) ratio of the areas obtained in (i) and (ii).

Answer 9:

(i) Radius of sphere = radius of cylinder = rHence, the surface area of sphere = $4\pi r^2$

- (ii) Radius of cylinder = r and height h = diameter of sphere = 2rHence, the curved surface area of cylinder = $2\pi rh$ = $2\pi r(2r)$ = $4\pi r^2$
- (iii) Now,

$$\frac{\text{Surface area of sphere}}{\text{Curved surface area of cylinder}} = \frac{4\pi r^2}{4\pi r^2} = \frac{1}{1}$$

Hence, the ratio of surface area of sphere to curved surface area of cylinder is 1:1.