

Fig. 5.2 Arrangement diagram

positive (+) terminal of the cell, and negative (-) terminal of the ammeter is joined to the negative (-) terminal of the cell. Make neat and tight connections.

- 4. Connect the voltmeter in parallel to the resistor, as shown in circuit diagram. Ensure that the positive (+) terminal of the voltmeter is joined to the positive (+) terminal of the cell, and the negative (-) terminal of the voltmeter is joined to the negative (-) terminal of cell.
- 5. Determine the least count of the ammeter and voltmeter, and check if any zero error exists.
- 6. Insert the plug in the key. Check if the ammeter and voltmeter show deflection. There should be deflection in both. In case there is no deflection, check/tighten the connections in the circuit.
- 7. Now adjust the slider of the rheostat, so that a small current passes through the resistor. Say, the ammeter shows a current of 0.10 A.
- 8. Read the corresponding value of potential difference from the voltmeter.
- 9. Take out the plug from the key. Record the values of current and potential difference in the table drawn.
- 10. Replace the plug in the key. Adjust the slider of the rheostat, such that the ammeter shows a current of 0.20 A. Read the corresponding value of potential difference from the voltmeter. Record the readings of I and V in the table.
- 11. Repeat the experiment, by adjusting the slider, for the values of current 0.3 A, 0.4 A, 0.5 A and 0.6 A. Read and record the corresponding potential difference in the table.

OBSERVATIONS:

1. Range of ammeter = ___ ampere 500 mA

Least count of ammeter = ___ ampere 10 mA

L.C. of ammeter = ___ value of 1 big division on scale (A)

no. of small division in 1 big division

Zero error in ammeter = number of division at which the pointer rests × L.C. of ammeter

$$= x$$
 ampere $= 0$

Zero correction for ammeter = (I + /-x) ampere = 0

2. Range of voltmeter = 5 volt

Least count of voltmeter = 0 1 volt

L.C. of voltmeter =
$$\frac{\text{value of 1 big division on scale }(V)}{\text{no. of small division in 1 big division}}$$

Zero error in voltmeter = y volt = 0

Zero correction for voltmeter = (V + /-y) volt = 0

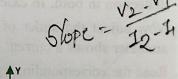
Ruf	hal	y
	= (3V
VA	:	
0		

S. No.	Ammeter reading I (ampere) mA		Voltmeter reading V (volt)		V/I = R
	Observed	Corrected	Observed	Corrected	(ohm)
1.	40	40	0.4	20-4	102
2.	80	80	0.8	0.8	10-2
3.	120	120	1.2	1-2	10-52
4.	160	160	1.6	1.6	1052
5.	200	200	2	2	1052
6.	oldo0	240.	2.4	2.4	10-12

CALCULATIONS:

- 1. Mean resistance of the resistor = $\frac{\frac{10 + 10 + 10 + 10 + 10}{6} + \frac{10}{6}}{6} = \frac{10}{10}$ ohms
- 2. Plot a graph between V and I. Take potential difference (V) on y-axis and current (I) on x-axis. Join all points by a 'best fit' line so that most of the points lie on it. The slope of the line is the resistance of the resistor used in the circuit:

Slope =
$$\frac{QM}{MP} = \frac{V_2 - V_1}{I_2 - I_1}$$


3. Extend the line backward and observe if it passes through the origin.

CONCLUSIONS:

1. As seen from the above table, the ratio of V/I is constant. Therefore, it is verified that potential difference is directly proportional to current (I) flowing in the circuit.

This verifies Ohm's law.

- 2. As the graph is a straight line, it proves that V is directly proportional to I. This again verifies Ohm's law.
- 3. The resistance R of a conductor is equal to the ratio of potential difference V to current I.
- 4. The slope of the graph $\Delta V/\Delta I$ gives us the magnitude of resistance, i.e. $R = \Delta V/\Delta I$.

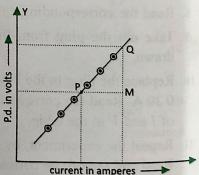
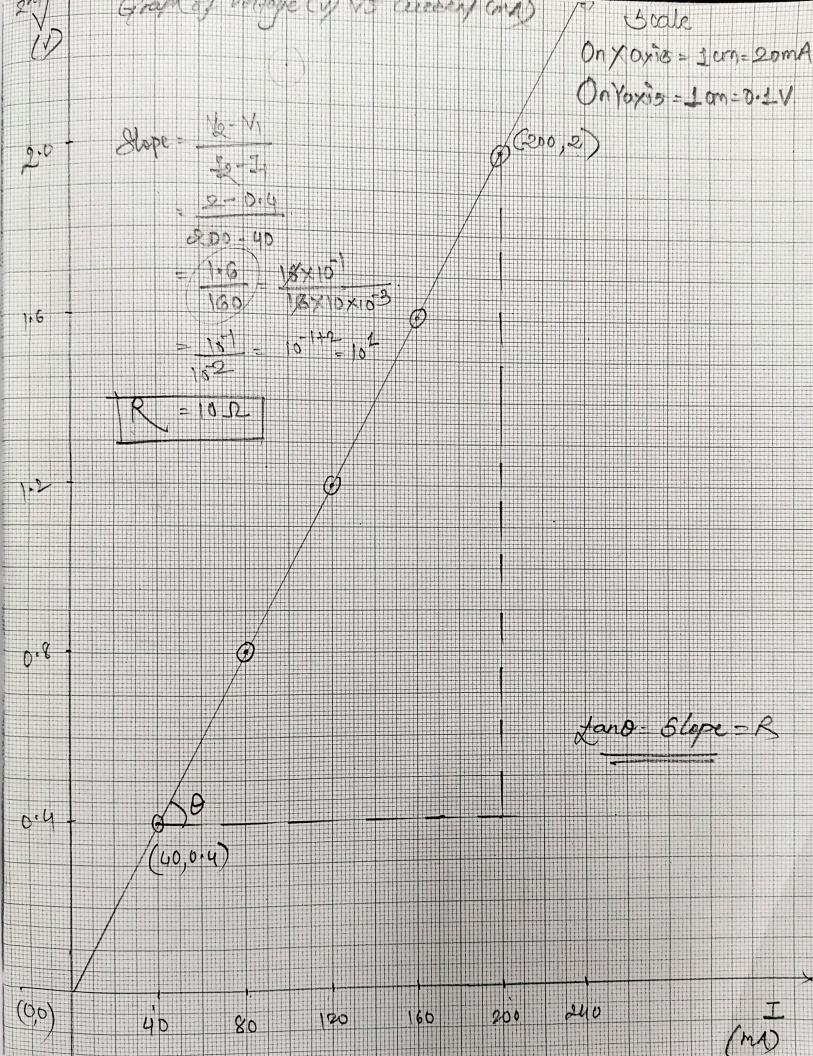



Fig. 5.4 Graph between potential difference and current

PRECAUTIONS:

- 1. Thick copper wires should be used as connecting wires.
- 2. All connections should be neat and tight.

