
useEffect

Question 1: Create a React app with a component called DocumentTitle, which

takes a title prop. The component should update the document title with the

provided title using the useEffect hook.

For example, a functional component called DocumentTitle. It takes a title

prop and uses the useEffect hook to update the document title. The effect is

triggered whenever the title prop changes. When the component is mounted,

it sets the document title to the provided title. If the

title prop changes during the component's lifecycle, the effect will update the

document title accordingly.

Question 2: Create a React app with a component called Timer, which displays

a timer that increments every second. Use the useEffect hook to implement the

timer functionality.

For example, a functional component called Timer. It uses the useEffect hook

with an empty dependency array []. This means the effect will only run once

when the component is mounted. Inside the effect, we set up a timer using

setInterval to increment the seconds state every second. The effect also returns

a cleanup function using return, which clears the interval when the component

is unmounted, preventing memory leaks.

Question 3: Create a React app with a component called WindowWidth, which

displays the current window width. Use the useEffect hook to update the width

when the window is resized.

For example, a functional component called WindowWidth. It uses the

useEffect hook with an empty dependency array [], so the effect runs only once

when the component is mounted. Inside the effect, we add an event listener

for the 'resize' event to the window object. When the window is resized, the

handleResize function updates the windowWidth state with the new window

width. The effect also returns a cleanup function using return, which removes

the event listener when the component is unmounted to prevent unnecessary

event handling.




